RegularChains - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Factorization and Solving Equations : RegularChains : RegularChains/Inequations

RegularChains

  

Inequations

  

list of inequations of the regular chain

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Inequations(rc, R)

Parameters

rc

-

regular chain of R

R

-

polynomial ring

Description

• 

The command Inequations(rc,R) returns the set of the initials of rc.

• 

By definition, a zero of the regular chain rc is a common zero of its equations that does not cancel any of the initials of rc.

• 

This command is part of the RegularChains package, so it can be used in the form Inequations(..) only after executing the command with(RegularChains).  However, it can always be accessed through the long form of the command by using RegularChains[Inequations](..).

Examples

withRegularChains:

RPolynomialRingx,y,a,b,c,d,g,h

R:=polynomial_ring

(1)

sysax+byg,cx+dyh

sys:=ax+byg,cx+dyh

(2)

First, we compute the generic solutions of sys, that is a triangular decomposition of the zeros of sys in the sense of Kalkbrener.

decTriangularizesys,R;mapEquations,dec,R

dec:=regular_chain

cx+ydh,adbcyah+cg

(3)

Then we compute all the solutions (generic or not), that is a triangular decomposition in the sense of Lazard. For each computed regular chain, we show its equations and inequations.

decTriangularizesys,R,output=lazard

dec:=regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain

(4)

mapEquations,dec,R

cx+dyh,dabcyha+cg,cx+dyh,dabc,hbdg,ax+byg,dyh,c,dyh,a,hbdg,c,cxh,hacg,b,d,ax+byg,c,d,h,cx+dy,dabc,g,h,byg,a,c,d,h,y,a,c,g,h,x,b,d,g,h,a,b,c,d,g,h

(5)

mapInequations,dec,R

c,dabc,c,d,h,a,d,d,h,c,h,a,c,d,b,,,

(6)

seqeq=Equationsdeci,R,ineq=Inequationsdeci,R,i=1..nopsdec

eq=cx+dyh,dabcyha+cg,ineq=c,dabc,eq=cx+dyh,dabc,hbdg,ineq=c,d,h,eq=ax+byg,dyh,c,ineq=a,d,eq=dyh,a,hbdg,c,ineq=d,h,eq=cxh,hacg,b,d,ineq=c,h,eq=ax+byg,c,d,h,ineq=a,eq=cx+dy,dabc,g,h,ineq=c,d,eq=byg,a,c,d,h,ineq=b,eq=y,a,c,g,h,ineq=,eq=x,b,d,g,h,ineq=,eq=a,b,c,d,g,h,ineq=

(7)

See Also

Equations

Initial

PolynomialRing

RegularChains

Triangularize

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam