RandomTools Flavor: nonnegint - Maple Programming Help

Home : Support : Online Help : Programming : Random Objects : RandomTools package : Flavors : RandomTools/flavor/nonnegint

RandomTools Flavor: nonnegint

describe a flavor of random non-negative integer

 Calling Sequence nonnegint nonnegint(opt)

Parameters

 opt - equation of the form range = value; specify option for the random non-negative integer

Description

 • The flavor nonnegint describes a random non-negative integer.
 To describe a flavor of a random non-negative integer, use either nonnegint or nonnegint(opt) (where opt is described following) as the argument to RandomTools[Generate] or as part of a structured flavor.
 • By default, the flavor nonnegint describes a random non-negative integer in the range $0..99999999989$, inclusive.
 • You can modify the properties a random non-negative integer by using the nonnegint(opt) form of this flavor.  The opt argument can contain the following equation.
 range = b
 This option describes the right endpoint of the range from which the random integer is chosen. The right endpoint must be of type nonnegint and it describes a random integer in the interval $0..b$, inclusive.

Examples

 > $\mathrm{with}\left(\mathrm{RandomTools}\right):$
 > $\mathrm{Generate}\left(\mathrm{nonnegint}\right)$
 ${63715876729}$ (1)
 > $\mathrm{Generate}\left(\mathrm{nonnegint}\left(\mathrm{range}=7\right)\right)$
 ${4}$ (2)
 > $\mathrm{Generate}\left(\mathrm{list}\left(\mathrm{nonnegint}\left(\mathrm{range}=10\right),10\right)\right)$
 $\left[{5}{,}{1}{,}{10}{,}{3}{,}{5}{,}{4}{,}{10}{,}{0}{,}{7}{,}{4}\right]$ (3)
 > $\mathrm{seq}\left(\mathrm{Generate}\left(\mathrm{nonnegint}\right),i=1..10\right)$
 ${7412421905}{,}{85818212663}{,}{43421525586}{,}{73497475450}{,}{62877304839}{,}{42427536557}{,}{49407854984}{,}{54966684858}{,}{65976255360}{,}{22385044556}$ (4)
 > $\mathrm{Matrix}\left(3,3,\mathrm{Generate}\left(\mathrm{nonnegint}\left(\mathrm{range}=7\right)\mathrm{identical}\left(x\right)+\mathrm{nonnegint}\left(\mathrm{range}=7\right),\mathrm{makeproc}=\mathrm{true}\right)\right)$
 $\left[\begin{array}{ccc}{5}{}{x}{+}{6}& {3}{}{x}{+}{6}& {2}{}{x}{+}{5}\\ {4}{}{x}{+}{6}& {6}{}{x}{+}{2}& {4}{}{x}{+}{3}\\ {2}{}{x}{+}{6}& {7}{}{x}{+}{1}& {2}{}{x}\end{array}\right]$ (5)