PolynomialIdeals - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Algebra : Polynomials : PolynomialIdeals : PolynomialIdeals/Intersect

PolynomialIdeals

  

Intersect

  

intersect two or more ideals

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Intersect(J, K, ...)

Parameters

J, K

-

polynomial ideals

Description

• 

The Intersect command computes the intersection of two or more polynomial ideals.  The set of variables is extended to include the variables of each ideal.  If the ideals cannot be put into a common polynomial ring, then an error is produced.

• 

The Intersect command makes extensive use of generators that are common to one or more of the ideals.  Thus for certain applications, such as intersecting prime components, avoid using the Simplify command prior to using Intersect.

Examples

withPolynomialIdeals:

Jxx1,y2y2

J:=xx1,y2y2

(1)

Kx12y3

K:=x12y3

(2)

LIntersectJ,K

L:=x3y32x2y3+xy3,x2y42x2y32xy4+4xy3+y42y3

(3)

mapfactor,GeneratorsL

xy3x12,y3x12y2

(4)

Trinks45p+35s165b36,35p+40z+25t27s,15w+25ps+30z18t165b2,9w+15pt+20zs,wp+2zt11b3,99w11sb+3b2:

PPrimeDecompositionTrinks

P:=35p+40z+25t27s,45p+35s165b36,10000b2+6600b+2673,3b211bs+99w,11b3+pw+2tz,15pt+20sz9w,165b2+25ps18t+15w+30z,35p+40z+25t27s,45p+35s165b36,3b211bs+99w,11b3+pw+2tz,15pt+20sz9w,165b2+25ps18t+15w+30z,4380800000000000b8+16108202000000000b7+22514571860000000b6+18624678595600000b5+9432310305572000b4+2959977269862580b3+617295990812985b2+80609374775160b+3361317558192

(5)

IntersectP

45p+35s165b36,252+360z488s+225t+1155b,3b2+11bs99w,720b2+100s2+495b312s+189t4320w+108,9780b3+5511b2+2541bt54780bw+12100sw+1452b37752w,31905b28250bt+3625st+20130b10588s+5886t87705w+4392,3517910176905b21957980036375bt41699992620000bw+2053884110000sw+6296364000000tw4270660634130b+3051085536688s2793459284586t+9307987795080w1203227496792,1878597945b2277744500bt+6163080000bw1364740000sw+132946875t2+1427525220b842211872s+617096484t2545409520w+349357248,217116000000b2t523021633605b2231486118875bt9181541820000bw+1498470710000sw651341592330b+472703393008s432789466626t+608907986280w186415527672,31183768112939065344000000000000w34383898761959271072221964848415b27903710355804657299210818786625bt117103813087016017731632275860000bw+12316920319203058988534335330000sw137137883064576891898454400000000w28702178744906158552643521345790b+7447021570649738370655533213584s7784271516314849432429864858598t+21118050431651645563189897792440w2801807632629602942921244631656,338965791342080000000000sw2+221155529291376910543935b2+375421939762061941934625bt+5590055517660268491540000bw584789005513826862370000sw+6837072534440841600000000w2+422013879012204865685310b356171590884671762712976s+370234284729884595453222t1039943191683735694847160w+134345134485535123713384,156602195600040960000000000bw2+67616116062115359652310385b2+114854703032577754306083375bt+1739802332651675509271340000bw187872451101953392294270000sw+2062650565630151337600000000w2+130204742924375556672575010b110656861555918546136790896s+115092438872369240664523962t304732879233181539528924360w+41720006256591398587472664,649952667840000000b2w160178876945916915b2405324636049414125bt5542640048550660000bw+467514361356730000sw9508517058240000000w2412686923010127590b+377102729779293584s403888404899889198t+892474508950948440w140557774363306056

(6)

References

  

Cox, D.; Little, J.; and O'Shea, D. Ideals, Varieties, and Algorithms. 2nd ed. New York: Springer-Verlag, 1997.

See Also

PolynomialIdeals

PolynomialIdeals[EliminationIdeal]

PolynomialIdeals[Generators]

PolynomialIdeals[PrimeDecomposition]

PolynomialIdeals[Simplify]

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam