compute the Hilbert dimension of an ideal - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Algebra : Polynomials : PolynomialIdeals : PolynomialIdeals/HilbertDimension

PolynomialIdeals[HilbertDimension] - compute the Hilbert dimension of an ideal

PolynomialIdeals[MaximalIndependentSet] - compute a maximal independent set of variables

PolynomialIdeals[IsZeroDimensional] - test if an ideal is zero-dimensional

Calling Sequence

HilbertDimension(J, X)

MaximalIndependentSet(J, X)

IsZeroDimensional(J, X)

Parameters

J

-

polynomial ideal

X

-

(optional) set of ring variable names

Description

• 

The HilbertDimension command computes the Hilbert dimension of an ideal.

• 

The MaximalIndependentSet command computes a maximal independent set of variables for an ideal J in kX.  This set has the property that JkX=0.  The cardinality of this set is an invariant, equal to the Hilbert dimension of the ideal. These commands require a total degree Groebner basis.

• 

The IsZeroDimensional command tests only whether an ideal has Hilbert dimension zero.  This can be done using any Groebner basis. In cases where the dimension is not zero, some computation is avoided.

• 

An optional second argument can be used to override the variables of the polynomial ring.

Examples

withPolynomialIdeals:

J:=x2y2+z4w,xzyw2

J:=w2y+xz,wz4+x2y2

(1)

J is in Q[w, x, y, z].

IsZeroDimensionalJ

false

(2)

M:=MaximalIndependentSetJ

M:=y,z

(3)

EliminationIdealJ,M

0

(4)

HilbertDimensionJ

2

(5)

V:=IdealInfo:-VariablesJ

V:=w,x,y,z

(6)

HilbertDimensionJ,V∖M

0

(7)

See Also

Groebner[Basis], Groebner[HilbertDimension], Groebner[IsZeroDimensional], MonomialOrders, PolynomialIdeals, PolynomialIdeals[EliminationIdeal], PolynomialIdeals[IdealInfo]

References

  

Becker, T., and Weispfenning, V. Groebner Bases. New York: Springer-Verlag, 1993.


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam