PolynomialIdeals - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Algebra : Polynomials : PolynomialIdeals : PolynomialIdeals/EquidimensionalDecomposition

PolynomialIdeals

  

EquidimensionalDecomposition

  

Decompose an ideal into ideals of distinct dimension

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

EquidimensionalDecomposition(J)

Parameters

J

-

a polynomial ideal

Description

• 

The EquidimensionalDecomposition command computes a sequence of ideals of distinct Hilbert dimension whose intersection is equal to the original ideal. Assuming there are no embedded primes, the prime components of each ideal in the sequence have the same dimension also. In general this decomposition is not unique.

• 

This function is part of the PolynomialIdeals package, and can be used in the form EquidimensionalDecomposition(..) only after executing the command with(PolynomialIdeals).  However, it can always be accessed through the long form of the command using PolynomialIdeals[EquidimensionalDecomposition](..).

Examples

In the example below, the variety is composed of five points (dimension zero), three curves (dimension one), and one surface (dimension two). The equidimensional decomposition places all of the points, all of the curves, and all of the surfaces into separate ideals.

withPolynomialIdeals:

Jz4x3+z4y2z5z4xzx4xy2z+z2x+zx2,x2y2zx2+zxy2zx3zyz+x3yxy+x5x3+y3+z2,z3x4+z3xy2z3x3x5y2z3z3x2z4xx2y2+x4+z3x+z4+xy2+x3+zx2x2zx:

EEquidimensionalDecompositionJ

E:=z2,y2z+yz,y6+2y5+y4,x3yzxyz+yz,x4+x3yx3z+xy2+y3x2xy,x3y2+x3yx3z+y4xy2+y3xy+xz+yz,yz6+z6+y2yz+yz,x3z6xz6z7+z6+x3yx3zxy+xzyz+z2+yz,yz9+z9xyz6xz6x3z3yz4+x4+xz3+yz3+xyzx2xy,x3+y2xz

(1)

seqHilbertDimensioni,i=E

0,1,2

(2)

seqmapHilbertDimension,PrimaryDecompositioni,x,y,z,i=E

0,0,0,0,0,1,1,1,2

(3)

The next example illustrates what happens when embedded primes are present.

Kx2y,x3yzw

K:=x2y,wyz+x3

(4)

EEquidimensionalDecompositionK

E:=w,y2,xy,x2y,x2y,wyzxy

(5)

seqHilbertDimensioni,x,y,z,w,i=E

1,2

(6)

seqmapHilbertDimension,PrimaryDecompositioni,x,y,z,w,i=E

1,2,2,1

(7)

References

  

Becker, T., and Weispfenning, V. Groebner Bases. Springer-Verlag, 1993.

Compatibility

• 

The PolynomialIdeals[EquidimensionalDecomposition] command was updated in Maple 16.

See Also

map

PolynomialIdeals[HilbertDimension]

PolynomialIdeals[Intersect]

PolynomialIdeals[PrimeDecomposition]

PolynomialIdeals[Simplify]

PolynomialIdeals[ZeroDimensionalDecomposition]

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam