OreTools - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Algebra : Skew Polynomials : OreTools : OreTools/ParametricGCRD

OreTools

  

ParametricGCRD

  

determine the dependency of GCRD on a parameter

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

ParametricGCRD(P1, P2, ..., cond, Par, A)

Parameters

P1, P2, ...

-

Ore polynomials depending on a parameter; to define an Ore polynomial, use the OrePoly structure.

cond

-

polynomial in Par

Par

-

name; parameter

A

-

Ore algebra; to define an Ore algebra, use the SetOreRing function.

Description

• 

The ParametricGCRD(P1, P2, ..., cond, Par, A) calling sequence finds the dependency of the greatest common right divisor (GCRD) of two or more Ore polynomials P1, P2, ... with polynomial coefficients and parametrized on Par that satisfies the polynomial condition condPar=0.

• 

The ParametricGCRD command returns an error message if the Ore polynomials P1, P2, ... do not have polynomial coefficients.

• 

The return value depends on cond.

1. 

If cond is a nonzero constant, the ParametricGCRD command returns NULL.

2. 

If cond0, the ParametricGCRD command returns piecewisecond_1=0,g1,...,cond_n=0,gn. For i=1, ... n, cond_i is a polynomial in Par, and g_i is an Ore polynomial with polynomial coefficients such that g_i=GCRD(P1, P2, ...) when cond_iPar=0. The product cond_1...cond_n is equal to cond.

3. 

If cond=0, the ParametricGCRD command returns piecewisecond_1=0,g1,...,cond_n=0,gn,g_otherwise. For i=1, ... n, cond_i and g_i are defined as in the previous case and g_otherwise=GCRD(P1, P2, ...) for all other values of Par.

4. 

If cond=0 and there are no other GCRDs, the ParametricGCRD command returns the Ore polynomial that is the GCRD(P1, P2, ...) for all Par .

Examples

withOreTools:

ERingSetOreRingx,'shift'

ERing:=UnivariateOreRingx,shift

(1)

p1OrePoly1,1,0,a+2x

p1:=OrePoly1,1,0,a+2x

(2)

p2OrePoly0,a+2a+1x

p2:=OrePoly0,a+2a+1x

(3)

ParametricGCRDp1,p2,a+1a+2a,a,ERing

{OrePoly1a=0OrePoly1,1,0,xa+1=0OrePoly1,1a+2=0

(4)

DRingSetOreRingx,'differential'

DRing:=UnivariateOreRingx,differential

(5)

p3OrePolya,2a,x+a

p3:=OrePolya,2a,x+a

(6)

p4OrePolyax,2axa+1,ax2+x

p4:=OrePolyxa,2axa+1,ax2+x

(7)

ParametricGCRDp3,p4,a2aa+1,a,DRing

{OrePolya,2a,ax+1a1a=0OrePoly1a+1=0

(8)

ParametricGCRDp3,p4,0,a,DRing

{OrePolya,2a,ax+1a1a=0OrePoly1otherwise

(9)

References

  

Glotov, P.E. "An algorithm of searching the greatest common divisor for Ore polynomial with polynomial coefficients depending on a parameter." Programming and Computer Software. Vol. 24 No. 6, (1998): 275-283.

See Also

OreTools

OreTools/Modular/GCRD

OreTools/OreAlgebra

OreTools/OrePoly

OreTools[SetOreRing]

piecewise

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam