compute the right pseudo-quotient of two Ore polynomials modulo a prime - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Algebra : Skew Polynomials : OreTools : OreTools/Modular/Divisions

OreTools[Modular][RightPseudoQuotient] - compute the right pseudo-quotient of two Ore polynomials modulo a prime

OreTools[Modular][RightPseudoRemainder] - compute the right pseudo-remainder of two Ore polynomials modulo a prime

OreTools[Modular][RightQuotient] - compute the right quotient of two Ore polynomials modulo a prime

OreTools[Modular][RightRemainder] - compute the right remainder of two Ore polynomials modulo a prime

Calling Sequence

Modular[RightPseudoQuotient](Ore1, Ore2, p, A, 'm', 'R')

Modular[RightPseudoRemainder](Ore1, Ore2, p, 'm', 'Q')

Modular[RightQuotient](Ore1, Ore2, p, A, 'R')

Modular[RightRemainder](Ore1, Ore2, p, A, 'Q')

Parameters

Ore1, Ore2

-

two Ore polynomials; to define an Ore polynomial, use the OrePoly structure

p

-

prime

A

-

Ore ring; to define an Ore ring, use the SetOreRing command

m, Q, R

-

unevaluated names

Description

• 

The Modular[RightPseudoQuotient](Ore1, Ore2, p, A, 'm', 'R') calling sequence computes the right pseudo-quotient of Ore1 and Ore2 modulo the prime p. If the fifth (optional) argument is present, it is assigned the multiplier. If the sixth (optional) argument is present, it is assigned the right pseudo-remainder of  Ore1  and Ore2.

• 

The Modular[RightPseudoRemainder](Ore1, Ore2, p, A, 'm', 'Q') calling sequence computes the right pseudo-remainder of Ore1 and Ore2 modulo the prime p. If the fifth (optional) argument is present, it is assigned the multiplier. If the sixth (optional) argument is present, it is assigned the right pseudo-quotient of Ore1  and Ore2.

• 

The Modular[RightQuotient](Ore1, Ore2, p, A, ''R') calling sequence computes the right quotient of Ore1 and Ore2 modulo the prime p. If the fifth (optional) argument is present, it is assigned the right remainder of  Ore1  and Ore2.

• 

The Modular[RightRemainder](Ore1, Ore2, p, A, 'Q') calling sequence computes the right remainder of Ore1 and Ore2 modulo the prime p. If the fifth (optional) argument is present, it is assigned the right quotient of Ore1  and Ore2.

Examples

withOreTools:

A:=SetOreRingn,differential

A:=UnivariateOreRingn,differential

(1)

Ore1:='OrePoly'n,5n+n2+3,n3,38n21

Ore1:=OrePolyn,n2+5n3,n3,38n21

(2)

Ore2:='OrePoly'n,5n+n2+3,n3

Ore2:=OrePolyn,n2+5n3,n3

(3)

ModularRightPseudoRemainderOre1,Ore2,11,A

OrePoly5n5+8n4+3n3+n2+8n+3,5n6+5n5+10n4+2n3+6n2+6n+1

(4)

Q:=ModularRightPseudoQuotientOre1,Ore2,19,A,'m','R'

Q:=OrePoly18n+7,18n+3

(5)

Check the results.

l:=ModularScalarMultiplym,Ore1,19

l:=OrePoly18n2+13n+9n,18n2+13n+9n2+14n+3,n2+13n+9n+16,18n2+6n+10

(6)

r:=ModularMultiplyQ,Ore2,19,A

r:=OrePolyn2+13n+16,n3+10n2+5n+13,n3+10n2+8n+11,18n+162

(7)

ModularMinusModularMinusl,r,19,R,19

OrePoly0

(8)

R:=ModularRightRemainderOre1,Ore2,11,A,'Q'

R:=OrePoly5n4+n3+6n2+8n+10n+8,5n5+9n4+4n3+3n2+4n+7n+8

(9)

Check the results.

r:=ModularMultiplyQ,Ore2,11,A

r:=OrePoly6n4+10n3+4n2+6n+1n+8,6n5+2n4+6n3+5n2+2n+8,n+8,5n+3n+8

(10)

ModularMinusModularMinusOre1,r,11,R,11

OrePoly0

(11)

ModularRightQuotientOre1,Ore2,19,A

OrePoly18n+7n2+13n+9,18n+16

(12)

See Also

OreTools, OreTools/Euclidean, OreTools/Modular, OreTools/OreAlgebra, OreTools/OrePoly, OreTools/RingArith, OreTools[SetOreRing]


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam