MatrixPolynomialAlgebra - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Linear Algebra : Matrix Polynomial Algebra : MatrixPolynomialAlgebra/MatrixLCLM

MatrixPolynomialAlgebra

  

MatrixLCLM

  

compute a least-common left multiple of 2 matrices of polynomials

  

MatrixLCRM

  

compute a least-common right multiple of 2 matrices of polynomials

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

MatrixLCLM(A, B, x)

MatrixLCRM(A, B, x)

Parameters

A

-

Matrix of polynomials

B

-

Matrix of polynomials

x

-

variable name of the polynomial domain

Description

• 

The MatrixLCLM(A, B, x) command computes a least-common left multiple of two matrices of polynomials. Both input matrices of polynomials can be square or rectangular but must have the same number of columns. The entries are either univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q, that is, univariate polynomials in x with coefficients in Q(a1,...,an).

  

The matrix of polynomials [ATBT]^T must have more rows than columns and full column rank.

• 

The MatrixLCRM(A, B, x) command computes a least-common right multiple of two matrices of polynomials.  The matrix of polynomials [AB] must have more columns than rows and full row rank.

  

The method is a fraction-free algorithm by Beckermann and Labahn that computes a matrix GCD using Mahler systems.

Examples

withMatrixPolynomialAlgebra:

AMatrix2,2,9z23z+1,12z2+10z,3z3+2z2z,4z3+2z2z2:

BMatrix2,2,3z3+6z2+5z+1,12z213z,z4+z3+z2,4z33z+3z2:

Left matrix LCMs:

CMatrixLCLMA,B,z

C:=108z5228z492z3+66z2+27z+2144z5+504z4+28z3128z226z36z584z424z3+26z2+7z48z5+184z412z340z26z

(1)

Right matrix LCMs:

CMatrixLCRMA,B,z

C:=60z4+59z3+12z2+10z+212z3+z213z20z513z4+17z3+2z24z47z3+6z23z

(2)

References

  

Beckermann, B., and Labahn, G. "Fraction-free Computation of Matrix Rational Interpolants and Matrix GCDs." SIAM Journal on Matrix Analysis and Applications, Vol. 22 No.1, (2000): 114-144.

See Also

indets

Matrix

MatrixPolynomialAlgebra

MatrixPolynomialAlgebra[HermiteForm]

MatrixPolynomialAlgebra[MahlerSystem]

MatrixPolynomialAlgebra[MatrixGCRD]

MatrixPolynomialAlgebra[PopovForm]

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam