MTM[besseli], MTM[besselj] - Maple Help

Home : Support : Online Help : Connectivity : MTM Package : MTM/bessel

MTM[besseli], MTM[besselj]

Bessel functions of the first kind

MTM[besselk], MTM[bessely]

Bessel functions of the second kind

 Calling Sequence besseli(v,x) besselj(v,x) besselk(v,x) bessely(v,x)

Parameters

 v - algebraic expression (the order or index) x - algebraic expression (the argument)

Description

 • besselj and bessely are the Bessel functions of the first and second kinds, respectively. They satisfy the Bessel equation:

${x}^{2}\left(\frac{{{\partial }}^{2}}{{\partial }{x}^{2}}y\right)+x\left(\frac{{\partial }}{{\partial }x}y\right)+\left(-{v}^{2}+{x}^{2}\right)y=0$

 • besseli and besselk are the modified Bessel functions of the first and second kinds, respectively. They satisfy the modified Bessel equation:

${x}^{2}\left(\frac{{{\partial }}^{2}}{{\partial }{x}^{2}}y\right)+x\left(\frac{{\partial }}{{\partial }x}y\right)-\left(-{v}^{2}+{x}^{2}\right)y=0$

 • By default, these functions will evaluate only when the result is an exact value, or when the input x is a floating point number.  When x is a symbolic expression, they will remain in function form so that they can be manipulated symbolically by themselves or as part of a larger expression.

Examples

 > $\mathrm{with}\left(\mathrm{MTM}\right):$
 > $\frac{\partial }{\partial x}\mathrm{besselj}\left(v,x\right)$
 ${-}{\mathrm{BesselJ}}{}\left({v}{+}{1}{,}{x}\right){+}\frac{{v}{}{\mathrm{BesselJ}}{}\left({v}{,}{x}\right)}{{x}}$ (1)