determine the matrix exponential exp(A) for a Matrix A - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Linear Algebra : LinearAlgebra Package : Functional Calculus : LinearAlgebra/MatrixExponential

LinearAlgebra[MatrixExponential] - determine the matrix exponential exp(A) for a Matrix A

Calling Sequence

MatrixExponential(A, t, options)

Parameters

A

-

square Matrix

t

-

(optional) scalar parameter

options

-

(optional); constructor options for the result object

Description

• 

The MatrixExponential(A, t) command returns the Matrix exp(A*t) = I + A*t + 1/2!*A^2*t^2 + ... where I is the identity Matrix. This is an example of a generalized Matrix function, F(A).

• 

If the scalar parameter t is not specified, the first indeterminate (if any) in the Matrix is removed and used as a parameter.

• 

The options option provides additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list.  If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).

• 

This function is part of the LinearAlgebra package, and so it can be used in the form MatrixExponential(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[MatrixExponential](..).

Examples

withLinearAlgebra:

A:=Matrix13,10,21,16

A:=13102116

(1)

MatrixExponentialA

15ⅇ14ⅇ210ⅇ2+10ⅇ21ⅇ221ⅇ14ⅇ+15ⅇ2

(2)

MatrixExponentialA,x

15ⅇx14ⅇ2x10ⅇ2x+10ⅇx21ⅇ2x21ⅇx14ⅇx+15ⅇ2x

(3)

MatrixExponentialA,x

15ⅇx14ⅇ2x10ⅇ2x+10ⅇx21ⅇ2x21ⅇx14ⅇx+15ⅇ2x

(4)

A:=Matrix3.0,1.0,2.0,6.0

A:=3.01.02.06.0

(5)

MatrixExponentialA,readonly

8.5065363264448037.583962268615775.1679245372313329.749124091096

(6)

See Also

LinearAlgebra, LinearAlgebra[MatrixFunction], Matrix, Vector


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam