GroupTheory - Maple Help

Home : Support : Online Help : Mathematics : Group Theory : GroupTheory package : GroupTheory/MetacyclicGroup

GroupTheory

 MetacyclicGroup
 construct a finite metacyclic group

 Calling Sequence MetacyclicGroup(m, n, k) MetacyclicGroup(m, n, k, s)

Parameters

 m - a positive integer n - a positive integer k - a positive integer s - optional equation: form= "fpgroup" or form = "permgroup" (default)

Description

 • A group metacyclic if it has a cyclic normal subgroup the quotient by which is also cyclic. Every such group $G$ can be generated by two elements $a$ and $b$, with the subgroup $⟨a⟩$ normal in $G$. The group $G$ is then determined by the action of $⟨b⟩$ on $⟨a⟩$. Since $⟨a⟩$ is normal in $G$, it follows that the conjugate ${a}^{b}$ belongs to $⟨a⟩$ so there is a positive integer $k$ for which ${a}^{b}={a}^{-k}$. Thus, a finite metacyclic group $G$ is completely determined by the orders of $a$ and $b$ and the integer $k$.
 • The MetacyclicGroup( m, n, k ) command constructs a metacyclic group with generators $a$ and $b$ as described above, such that ${a}^{b}={a}^{-k}$, and where ${a}^{n}=1$ and ${b}^{m}=1$.
 • Note that the generators $a$ and $b$ need not have orders $n$ and $m$, respectively, but that their orders are necessarily divisors of $n$ and $m$.
 • By default, a permutation group is returned, but you can create a finitely presented group by passing the 'form' = "fpgroup" option.

Examples

 > $\mathrm{with}\left(\mathrm{GroupTheory}\right):$
 > $\mathrm{MetacyclicGroup}\left(6,8,5\right)$
 $⟨\left({1}{,}{9}{,}{10}{,}{11}{,}{12}{,}{13}\right)\left({2}{,}{15}{,}{16}{,}{17}{,}{18}{,}{19}\right)\left({3}{,}{20}{,}{21}{,}{22}{,}{23}{,}{24}\right)\left({4}{,}{25}{,}{26}{,}{27}{,}{28}{,}{29}\right)\left({5}{,}{30}{,}{31}{,}{32}{,}{33}{,}{34}\right)\left({6}{,}{35}{,}{36}{,}{37}{,}{38}{,}{39}\right)\left({7}{,}{40}{,}{41}{,}{42}{,}{43}{,}{44}\right)\left({8}{,}{14}{,}{45}{,}{46}{,}{47}{,}{48}\right){,}\left({1}{,}{2}{,}{3}{,}{4}{,}{5}{,}{6}{,}{7}{,}{8}\right)\left({9}{,}{15}{,}{20}{,}{25}{,}{30}{,}{35}{,}{40}{,}{14}\right)\left({10}{,}{16}{,}{21}{,}{26}{,}{31}{,}{36}{,}{41}{,}{45}\right)\left({11}{,}{17}{,}{22}{,}{27}{,}{32}{,}{37}{,}{42}{,}{46}\right)\left({12}{,}{18}{,}{23}{,}{28}{,}{33}{,}{38}{,}{43}{,}{47}\right)\left({13}{,}{19}{,}{24}{,}{29}{,}{34}{,}{39}{,}{44}{,}{48}\right)⟩$ (1)
 > $\mathrm{MetacyclicGroup}\left(6,8,5,'\mathrm{form}'="permgroup"\right)$
 $⟨\left({1}{,}{9}{,}{10}{,}{11}{,}{12}{,}{13}\right)\left({2}{,}{15}{,}{16}{,}{17}{,}{18}{,}{19}\right)\left({3}{,}{20}{,}{21}{,}{22}{,}{23}{,}{24}\right)\left({4}{,}{25}{,}{26}{,}{27}{,}{28}{,}{29}\right)\left({5}{,}{30}{,}{31}{,}{32}{,}{33}{,}{34}\right)\left({6}{,}{35}{,}{36}{,}{37}{,}{38}{,}{39}\right)\left({7}{,}{40}{,}{41}{,}{42}{,}{43}{,}{44}\right)\left({8}{,}{14}{,}{45}{,}{46}{,}{47}{,}{48}\right){,}\left({1}{,}{2}{,}{3}{,}{4}{,}{5}{,}{6}{,}{7}{,}{8}\right)\left({9}{,}{15}{,}{20}{,}{25}{,}{30}{,}{35}{,}{40}{,}{14}\right)\left({10}{,}{16}{,}{21}{,}{26}{,}{31}{,}{36}{,}{41}{,}{45}\right)\left({11}{,}{17}{,}{22}{,}{27}{,}{32}{,}{37}{,}{42}{,}{46}\right)\left({12}{,}{18}{,}{23}{,}{28}{,}{33}{,}{38}{,}{43}{,}{47}\right)\left({13}{,}{19}{,}{24}{,}{29}{,}{34}{,}{39}{,}{44}{,}{48}\right)⟩$ (2)
 > $\mathrm{MetacyclicGroup}\left(6,8,5,'\mathrm{form}'="fpgroup"\right)$
 $⟨{}{a}{,}{b}{}{\mid }{}{{a}}^{{6}}{,}{{b}}^{{8}}{,}{{b}}^{{-1}}{}{a}{}{b}{}{{a}}^{{5}}{}⟩$ (3)

In the following example, the first parameter $6$ is a proper multiple of the order of the corresponding generator.

 > $a,b≔\mathrm{op}\left(\mathrm{Generators}\left(\mathrm{MetacyclicGroup}\left(6,8,4\right)\right)\right)$
 ${a}{,}{b}{:=}\left({1}{,}{9}{,}{10}\right)\left({2}{,}{12}{,}{13}\right)\left({3}{,}{14}{,}{15}\right)\left({4}{,}{16}{,}{17}\right)\left({5}{,}{18}{,}{19}\right)\left({6}{,}{20}{,}{21}\right)\left({7}{,}{22}{,}{23}\right)\left({8}{,}{11}{,}{24}\right){,}\left({1}{,}{2}{,}{3}{,}{4}{,}{5}{,}{6}{,}{7}{,}{8}\right)\left({9}{,}{13}{,}{14}{,}{17}{,}{18}{,}{21}{,}{22}{,}{24}\right)\left({10}{,}{12}{,}{15}{,}{16}{,}{19}{,}{20}{,}{23}{,}{11}\right)$ (4)
 > $\mathrm{PermOrder}\left(a\right)$
 ${3}$ (5)
 > $\mathrm{PermOrder}\left(b\right)$
 ${8}$ (6)

Compatibility

 • The GroupTheory[MetacyclicGroup] command was introduced in Maple 17.
 • For more information on Maple 17 changes, see Updates in Maple 17.