GroupTheory - Maple Programming Help

Home : Support : Online Help : Mathematics : Group Theory : GroupTheory package : GroupTheory/DihedralGroup

GroupTheory

 DihedralGroup
 construct a dihedral group of a given degree

 Calling Sequence DihedralGroup( n ) DihedralGroup( n, s )

Parameters

 n - a positive integer s - optional equation: form="fpgroup" or form="permgroup" (the default)

Description

 • The dihedral group of degree $n$ is the symmetry group of an $n$-sided regular polygon for $1.  It is generated by a reflection (of order $2$), and a rotation (of order $n$).  It acts as a permutation group on the vertices of the regular $n$-sided polygon.
 • The DihedralGroup( n ) command returns a dihedral group, either as a permutation group or a group defined by generators and defining relations. By default, a permutation group is returned, but a finitely presented group can be requested by passing the option 'form' = "fpgroup".
 • If the value of the parameter n is not numeric, then a symbolic group representing the dihedral group of the indicated degree is returned.

Examples

 > $\mathrm{with}\left(\mathrm{GroupTheory}\right):$
 > $\mathrm{DihedralGroup}\left(13\right)$
 ${{\mathrm{D}}}_{{13}}$ (1)
 > $\mathrm{DihedralGroup}\left(13,\mathrm{form}="fpgroup"\right)$
 ${{\mathrm{D}}}_{{13}}$ (2)
 > $\mathrm{DihedralGroup}\left(13,\mathrm{form}="permgroup"\right)$
 ${{\mathrm{D}}}_{{13}}$ (3)
 > $\mathrm{GroupOrder}\left(\mathrm{DihedralGroup}\left(3k\right)\right)$
 ${6}{}{k}$ (4)
 > $\mathrm{IsNilpotent}\left(\mathrm{DihedralGroup}\left(6k\right)\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}assuming\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}k::\mathrm{posint}$
 ${\mathrm{false}}$ (5)

Compatibility

 • The GroupTheory[DihedralGroup] command was introduced in Maple 17.