GraphTheory[SpecialGraphs] - Maple Help

Home : Support : Online Help : Mathematics : Discrete Mathematics : Graph Theory : GraphTheory Package : SpecialGraphs : GraphTheory/SpecialGraphs/GeneralizedBlanusaSnark

GraphTheory[SpecialGraphs]

 GeneralizedBlanusaSnark
 construct generalized Blanusa snark graph

 Calling Sequence GeneralizedBlanusaSnark(T, K)

Parameters

 T - type of snark family (1 or 2) K - nonnegative integer

Description

 • Generalized Blanusa snarks are Isaacs dot products of copies of the Petersen graph.
 • The argument K specifies the number of Petersen copies (K+1). The type T refers to two possible ways to perform the dot product on two copies of the Petersen graph. In particular, GeneralizedBlanusaSnark(T, 0) is the Petersen graph and GeneralizedBlanusaSnark(T, 1) is the T-th Blanusa snark (T=1,2).

Examples

 > $\mathrm{with}\left(\mathrm{GraphTheory}\right):$
 > $\mathrm{with}\left(\mathrm{SpecialGraphs}\right):$
 > $C≔\mathrm{GeneralizedBlanusaSnark}\left(1,1\right)$
 ${C}{:=}{\mathrm{Graph 1: an undirected unweighted graph with 18 vertices and 27 edge\left(s\right)}}$ (1)
 > $\mathrm{DrawGraph}\left(C\right)$
 > $C≔\mathrm{GeneralizedBlanusaSnark}\left(2,1\right)$
 ${C}{:=}{\mathrm{Graph 2: an undirected unweighted graph with 18 vertices and 27 edge\left(s\right)}}$ (2)
 > $\mathrm{DrawGraph}\left(C\right)$