GaussInt - Maple Programming Help

Home : Support : Online Help : Mathematics : Group Theory : Numbers : Integer Functions : Gaussian Integers : GaussInt/GIfactor

GaussInt

 GIfactor
 Gaussian integer factorization

 Calling Sequence GIfactor(c)

Parameters

 c - Gaussian integer, a list or a set of Gaussian integers

Description

 • The GIfactor function returns the Gaussian integer factorization of c.
 • The answer is in the form: $u{\left({f}_{1}\right)}^{{e}_{1}}\cdot \dots \cdot {\left({f}_{n}\right)}^{{e}_{n}}$ such that $c=u\cdot {f}_{1}^{{e}_{1}}\cdot \dots \cdot {f}_{n}^{{e}_{n}}$ where $u$ is one of four units, ${f}_{1},...,{f}_{n}$ are the distinct primary prime factors of c, and ${e}_{1},...,{e}_{n}$ are their multiplicities.
 • The number $x+Iy$ of the four associated primes $a+Ib$, $-a-Ib$, $-b+Ia$, $b-Ia$ is singled out as primary in which we have simultaneously either ($x=1\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{and}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}y=0\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}4$) or ($x=\left(-1\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{and}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}y=2\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}4$).
 • The expand function may be applied to cause the factors to be multiplied together again.

Examples

 > $\mathrm{with}\left(\mathrm{GaussInt}\right):$
 > $\mathrm{GIfactor}\left(-72-100I\right)$
 ${}\left({I}\right){}{{}\left({1}{+}{I}\right)}^{{4}}{}{}\left({-}{3}{-}{2}{}{I}\right){}{}\left({-}{3}{+}{8}{}{I}\right)$ (1)
 > $\mathrm{expand}\left(\right)$
 ${-}{72}{-}{100}{}{I}$ (2)
 > $\mathrm{GIfactor}\left(12101-15295I\right)$
 ${}\left({-}{1}\right){}{}\left({1}{+}{I}\right){}{}\left({1}{+}{4}{}{I}\right){}{}\left({5}{+}{8}{}{I}\right){}{}\left({9}{+}{16}{}{I}\right){}{}\left({-}{7}{-}{18}{}{I}\right)$ (3)
 > $\mathrm{expand}\left(\right)$
 ${12101}{-}{15295}{}{I}$ (4)