return the sum form of a given mathematical function - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : FunctionAdvisor : FunctionAdvisor/sum_form

FunctionAdvisor/sum_form - return the sum form of a given mathematical function

Calling Sequence

FunctionAdvisor(sum_form, math_function)

Parameters

sum_form

-

literal name; 'sum_form'

math_function

-

Maple name of mathematical function

Description

• 

The FunctionAdvisor(sum_form, math_function) command returns the sum form of the function if it exists.

Examples

FunctionAdvisorsum_form,StruveL

StruveLa,z=_k1=0∞12I112a+12+2_k1za+1+2_k1ⅇ12Iaπ2a+2_k1Γ32+_k1Γ32+a+_k1,Anda+32::Notnonnegint

(1)

FunctionAdvisorsum_form,JacobiTheta1a,z

JacobiTheta1a&comma;z&equals;_k1&equals;0&infin;2z_k1&plus;122sina2_k1&plus;11_k1&comma;Andz<1

(2)

FunctionAdvisorsum_form&comma;cos

cosz&equals;_k1&equals;0&infin;1_k1z2_k12_k1&excl;&comma;with no restrictions on z

(3)

The variables used by the FunctionAdvisor command to create the function calling sequences are local variables. Therefore, the previous example does not depend on z.

dependsFunctionAdvisorsum_form&comma;cos&comma;z

false

(4)

To make the FunctionAdvisor command return results using global variables, pass the function call itself.

f:=FunctionAdvisorsum_form&comma;Stirling1n&comma;z

f:=Stirling1n&comma;z&equals;_k1&equals;0nz_k2&equals;0_k112_k1_k2binomialn1&plus;_k1&comma;nz&plus;_k1binomial2nz&comma;nz_k1binomial_k1&comma;_k2_k2nz&plus;_k1_k1&excl;&comma;n::nonnegintAndz::nonnegint

(5)

dependsf&comma;n&comma;dependsf&comma;z

true&comma;true

(6)

See Also

depends, FunctionAdvisor, FunctionAdvisor/integral_form, FunctionAdvisor/topics


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam