FunctionAdvisor/known_functions - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : FunctionAdvisor : FunctionAdvisor/known_functions

FunctionAdvisor/known_functions

return a list of the mathematical function's names known by FunctionAdvisor

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

FunctionAdvisor(known_functions)

Parameters

known_functions

-

literal name; 'known_functions'

Description

• 

The FunctionAdvisor(known_functions) command returns a list of the mathematical function's names implemented in the Maple system.

Examples

FunctionAdvisorknown_functions

The functions on which information is available via
    > FunctionAdvisor( function_name );
are:

AiryAi,AiryBi,AngerJ,BellB,BesselI,BesselJ,BesselK,BesselY,Β,ChebyshevT,ChebyshevU,Chi,Ci,CoulombF,CylinderD,CylinderU,CylinderV,Dirac,Ei,EllipticCE,EllipticCK,EllipticCPi,EllipticE,EllipticF,EllipticK,EllipticModulus,EllipticNome,EllipticPi,FresnelC,FresnelS,Fresnelf,Fresnelg,Γ,GaussAGM,GegenbauerC,HankelH1,HankelH2,Heaviside,HermiteH,HeunB,HeunBPrime,HeunC,HeunCPrime,HeunD,HeunDPrime,HeunG,HeunGPrime,HeunT,HeunTPrime,Hypergeom,ℑ,InverseJacobiAM,InverseJacobiCD,InverseJacobiCN,InverseJacobiCS,InverseJacobiDC,InverseJacobiDN,InverseJacobiDS,InverseJacobiNC,InverseJacobiND,InverseJacobiNS,InverseJacobiSC,InverseJacobiSD,InverseJacobiSN,JacobiAM,JacobiCD,JacobiCN,JacobiCS,JacobiDC,JacobiDN,JacobiDS,JacobiNC,JacobiND,JacobiNS,JacobiP,JacobiSC,JacobiSD,JacobiSN,JacobiTheta1,JacobiTheta2,JacobiTheta3,JacobiTheta4,JacobiZeta,KelvinBei,KelvinBer,KelvinHei,KelvinHer,KelvinKei,KelvinKer,KummerM,KummerU,LaguerreL,LambertW,LegendreP,LegendreQ,LerchPhi,Li,LommelS1,LommelS2,MathieuA,MathieuB,MathieuC,MathieuCE,MathieuCEPrime,MathieuCPrime,MathieuExponent,MathieuFloquet,MathieuFloquetPrime,MathieuS,MathieuSE,MathieuSEPrime,MathieuSPrime,MeijerG,Ψ,ℜ,Shi,Si,SphericalY,Ssi,Stirling1,Stirling2,StruveH,StruveL,WeberE,WeierstrassP,WeierstrassPPrime,WeierstrassSigma,WeierstrassZeta,WhittakerM,WhittakerW,Wrightomega,ζ,abs,arccos,arccosh,arccot,arccoth,arccsc,arccsch,arcsec,arcsech,arcsin,arcsinh,arctan,arctanh,argument,bernoulli,binomial,conjugate,cos,cosh,cot,coth,csc,csch,csgn,dawson,dilog,doublefactorial,erf,erfc,erfi,euler,exp,factorial,harmonic,hypergeom,ln,lnGAMMA,log,max,min,piecewise,pochhammer,polylog,sec,sech,signum,sin,sinh,tan,tanh,unwindK

(1)

You can get a table of information for each function by specifying the function and the table keyword.

info_arccotFunctionAdvisortable,arccot

arccot belongs to the subclass "arctrig" of the class "elementary" and so, in principle, it can be related to various of the 26 functions of those classes - see FunctionAdvisor( "arctrig" ); and FunctionAdvisor( "elementary" );

info_arccot:=tabledefinition&equals;arccotz&equals;12&pi;12Iln1Izln1&plus;Iz&comma;MathematicalFunctions:-with no restrictions on z&comma;sum_form&equals;arccotz&equals;_k1&equals;0&infin;zIz_k1&plus;Iz_k12_k1&plus;2&plus;12&pi;&comma;Andz<1&comma;special_values&equals;arccot1&equals;34&pi;&comma;arccot133&equals;23&pi;&comma;arccot3&equals;56&pi;&comma;arccot0&equals;12&pi;&comma;arccot3&equals;16&pi;&comma;arccot133&equals;13&pi;&comma;arccot1&equals;14&pi;&comma;arccot&infin;&equals;0&comma;arccot&infin;&equals;&pi;&comma;singularities&equals;arccotz&comma;z&equals;&infin;&plus;&infin;I&comma;branch_cuts&equals;arccotz&comma;z&in;ComplexRange&infin;I&comma;I&comma;z&in;ComplexRangeI&comma;&infin;I&comma;symmetries&equals;arccotz&equals;&pi;arccotz&comma;arccotz&conjugate0;&equals;arccotz&conjugate0;&comma;notz&in;ComplexRange&infin;I&comma;Iorz&in;ComplexRangeI&comma;&infin;I&comma;asymptotic_expansion&equals;asymptarccotz&comma;z&comma;4&equals;1z13z3&plus;O1z5&comma;periodicity&equals;arccotz&comma;No periodicity&comma;DE&equals;fz&equals;arccotz&comma;&DifferentialD;&DifferentialD;zfz&equals;1z2&plus;1&comma;branch_points&equals;arccotz&comma;z&in;I&comma;I&comma;classify_function&equals;arctrig&comma;elementary&comma;integral_form&equals;arccotz&equals;&int;1&plus;Iz1Iz12I_k1&DifferentialD;_k1&plus;12&pi;&comma;MathematicalFunctions:-with no restrictions on z&comma;calling_sequence&equals;arccotz&comma;series&equals;seriesarccotz&comma;z&comma;4&equals;12&pi;z&plus;13z3&plus;Oz5&comma;identities&equals;cotarccotz&equals;z&comma;cotarccotz&plus;arccoty&equals;yz1z&plus;y&comma;differentiation_rule&equals;&DifferentialD;&DifferentialD;zarccotz&equals;1z2&plus;1&comma;&DifferentialD;n&DifferentialD;znarccotz&equals;2n1MeijerG0&comma;0&comma;12&comma;&comma;0&comma;12&plus;12n&comma;12n&comma;z2z1n&comma;describe&equals;arccot&equals;inverse cotangent function

(2)

info_arccotdescribe

arccot&equals;inverse cotangent function

(3)

info_arccotdefinition

arccotz&equals;12&pi;12Iln1Izln1&plus;Iz&comma;MathematicalFunctions:-with no restrictions on z

(4)

See Also

FunctionAdvisor

FunctionAdvisor/function_classes

FunctionAdvisor/topics

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam