display information about a mathematical function in an ordered manner - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : FunctionAdvisor : FunctionAdvisor/display

FunctionAdvisor/display - display information about a mathematical function in an ordered manner

Calling Sequence

FunctionAdvisor(display, math_function)

Parameters

display

-

literal name; 'display'

math_function

-

name of known mathematical function; see type/mathfunc

Description

• 

The FunctionAdvisor(display, math_function) command returns the information regarding that function available to the system. The information that displays is essentially the same as what you obtain by calling the FunctionAdvisor command without the keyword display.

Examples

sin_info:=FunctionAdvisorsin

The system is unable to compute the "asymptotic_expansion" for sin
sin belongs to the subclass "trig" of the class "elementary" and so, in principle, it can be related to various of the 26 functions of those classes - see FunctionAdvisor( "trig" ); and FunctionAdvisor( "elementary" );

sin_info:=tablesum_form=sinz=_k1=0∞1_k1z2_k1+12_k1+1!,with no restrictions on z,identities=sinz=sinz,sinz=2sin12zcos12z,sinz=1cscz,sinz=2tan12z1+tan12z2,sinz=12IⅇIzⅇIz,sinz2=1cosz2,sinz2=1212cos2z,differentiation_rule=ⅆⅆzsinz=cosz,series=seriessinz,z,4=z16z3+Oz5,describe=sin=sine function,symmetries=sinz=sinz,sinz&conjugate0;=sinz&conjugate0;,special_values=sin16π=12,sin14π=122,sin13π=123,sin∞=undefined,sin∞I=∞I,sinπn=0,Andn::integer,sin122n+1π=1,Andn::odd,sin122n+1π=1,Andn::even,integral_form=sinz=z∫01ⅇ2Iz_t1ⅆ_t1ⅇIz,with no restrictions on z,classify_function=trig,elementary,DE=fz=sinz,ⅆ2ⅆz2fz=fz,singularities=sinz,z=∞+∞I,calling_sequence=sinz,asymptotic_expansion=,branch_cuts=sinz,No branch cuts,definition=sinz=12IⅇIz1ⅇIz,with no restrictions on z,periodicity=sin2πm+z=sinz,Andm::integer,sinπm+z=1msinz,Andm::integer,branch_points=sinz,No branch points

(1)

FunctionAdvisordisplay,sin

The system is unable to compute the "asymptotic_expansion" for sin
sin belongs to the subclass "trig" of the class "elementary" and so, in principle, it can be related to various of the 26 functions of those classes - see FunctionAdvisor( "trig" ); and FunctionAdvisor( "elementary" );

describe=sin=sine function

classify_function=trig,elementary

definition=sinz=12IⅇIz1ⅇIz,with no restrictions on z

symmetries=sinz=sinz,sinz&conjugate0;=sinz&conjugate0;

periodicity=sin2πm+z=sinz,Andm::integer,sinπm+z=1msinz,Andm::integer

singularities=sinz,z=∞+∞I

branch_points=sinz,No branch points

branch_cuts=sinz,No branch cuts

special_values=sin16π=12,sin14π=122,sin13π=123,sin∞=undefined,sin∞I=∞I,sinπn=0,Andn::integer,sin122n+1π=1,Andn::odd,sin122n+1π=1,Andn::even

identities=sinz=sinz,sinz=2sin12zcos12z,sinz=1cscz,sinz=2tan12z1+tan12z2,sinz=12IⅇIzⅇIz,sinz2=1cosz2,sinz2=1212cos2z

sum_form=sinz=_k1=0∞1_k1z2_k1+12_k1+1!,with no restrictions on z

series=seriessinz,z,4=z16z3+Oz5

integral_form=sinz=z∫01ⅇ2Iz_t1ⅆ_t1ⅇIz,with no restrictions on z

differentiation_rule=ⅆⅆzsinz=cosz

DE=fz=sinz,ⅆ2ⅆz2fz=fz

(2)

Because you defined sin_info, the call FunctionAdvisor(display, sin_info) is also a valid and produces the same presentation as FunctionAdvisor(display, sin).

See Also

FunctionAdvisor, FunctionAdvisor/topics, type/mathfunc


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam