compute the drift component of an Ito process - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Finance : Stochastic Processes : Finance/Drift

Finance[Drift] - compute the drift component of an Ito process

Calling Sequence

Drift(X)

Drift(f, mu, sigma, X, t)

Parameters

X

-

stochastic process, expression involving stochastic variables

f

-

algebraic expression involving stochastic variables

mu

-

algebraic expression, drift term of the original process

sigma

-

algebraic expression, diffusion term of the original process

X

-

name, stochastic variable

t

-

name, time variable

Description

• 

The Drift(X) calling sequence computes the drift term of an Ito process X. That is, given a process Xt governed by the stochastic differential equation (SDE)

dXt=μXt,tdt+σXt,tdWt

the Drift command will return μXt,t.

• 

The parameter X can be either a stochastic process or an expression involving stochastic variables. In the first case a Maple procedure is applied for computing the drift term. This procedure will accept two parameters: the value of the state variable and the time, and return the corresponding value of the drift. In the second case, Ito's lemma will be applied to calculate the drift term of X. Note that the Drift command will perform formal computations; the validity of these computations for a given function f will not be verified.

Examples

withFinance:

The Drift command knows how to compute the drift for all supported Ito-type processes.

X:=OrnsteinUhlenbeckProcess0,θ,κ,σ

X:=_X

(1)

DriftX

x,t→κθx

(2)

DriftXt

κθ_Xt

(3)

You can also use expressions involving stochastic variables.

W:=WienerProcess

W:=_W

(4)

Driftat+bWt

a

(5)

X:=t→ⅇat+bWt

X:=t→ⅇat+bWt

(6)

simplifyDriftXtXt

a+12b2

(7)

U:=WienerProcess

U:=_W0

(8)

Y:=t→ⅇat+bWt+cUt

Y:=t→ⅇat+bWt+cUt

(9)

simplifyDriftYtYt

a+12b2+12c2

(10)

DriftXt,Yt

aⅇat+b_Wt+12b2ⅇat+b_Wtaⅇat+b_Wt+c_W0t+12b2ⅇat+b_Wt+c_W0t+12c2ⅇat+b_Wt+c_W0t

(11)

The following example deals with two correlated one-dimensional Wiener processes.

Σ:=1.0|0.5,0.5|1.0

Σ:=1.00.50.51.0

(12)

V:=WienerProcessΣ

V:=_W1

(13)

Z:=t→ⅇat+bVt1+cVt2

Z:=t→ⅇat+bVt1+cVt2

(14)

simplifyDriftZtZt

a+0.625000000000000b2+1.bc+0.625000000000000c2

(15)

See Also

Finance[BrownianMotion], Finance[CEVProcess], Finance[DeterministicProcess], Finance[Diffusion], Finance[GaussianShortRateProcess], Finance[GeometricBrownianMotion], Finance[HestonProcess], Finance[OrnsteinUhlenbeckProcess], Finance[SquareRootDiffusion], Finance[StochasticProcesses], Finance[WienerProcess]

References

  

Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.

  

Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.

  

Kloeden, P., and Platen, E., Numerical Solution of Stochastic Differential Equations, New York: Springer-Verlag, 1999.


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam