check if a list of subspaces defines a decreasing filtration of a Lie algebra - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : Query : DifferentialGeometry/LieAlgebras/Query/Filtration

Query[Filtration] - check if a list of subspaces defines a decreasing filtration of a Lie algebra

Calling Sequences

     Query([f0, f1, ..., fN], "Filtration")

Parameters

     f0, f1,     - a list of independent vectors defining subspaces of a Lie algebra 𝔤

 

Description

Examples

Description

• 

A collection of subspaces  f0, f1, ..., fN  of a Lie algebra 𝔤 defines a decreasing filtration of 𝔤  if  [i] fi fj  for ij , [ii] fi,  fj  fi+j  for  i +j N, and [iii] fi,  fj  = 0 for i +j  >N.

• 

Query([f0, f1, ... fN], "Filtration") returns true if the subspaces  f0, f1, ..., fN define a decreasing filtration of the Lie algebra 𝔤 and false otherwise.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First we initialize a Lie algebra.

L1_DGLieAlgebra,Alg1,4,1,4,1,2,2,3,1,1,2,4,2,1,3,4,2,1,3,4,3,1

L1:=e1,e4=2e1,e2,e3=e1,e2,e4=e2,e3,e4=e2+e3

(2.1)

DGsetupL1:

 

Now define a sequence of 4 subspaces.

Alg1 > 

f0e1,e2,e3,e4:f1e1,e2,e3:f2e1,e2:f3e1:f4:

 

We check that this sequence of Lie algebras defines a decreasing filtration.

Alg1 > 

Queryf0,f1,f2,f3,f4,Filtration

true

(2.2)

 

Example 2.

Here's an example which does not define a filtration. To see the specific brackets which fail to satisfy the filtration definition, we set the infolevel for Query to 2.

Alg1 > 

f0e1,e2,e3,e4:f1e1,e2:f2e2:f3:

Alg1 > 

infolevelQuery2:

Alg1 > 

Queryf0,f1,f2,f3,f4,Filtration

bracket of subspaces with weights 0 and 0 is [2*e1, e2, e2+e3]

bracket of subspaces with weights 0 and 1 is [-e1, -e2]
bracket of subspaces with weights 0 and 2 is [-e1, -e2]

false

(2.3)
Alg1 > 

 

This shows that the the Lie bracket f0,  f2 is not contained in f2

See Also

DifferentialGeometry

LieAlgebras

infolevel

Query

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam