check if a matrix defines a derivation on a Lie algebra - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : Query : DifferentialGeometry/LieAlgebras/Query/Derivation

Query[Derivation] - check if a matrix defines a derivation on a Lie algebra

Calling Sequences

     Query(Alg, A, "Derivation")

     Query(Alg, A, parm, "Derivation")

Parameters

     Alg     - the name of an initialized Lie algebra 𝔤

     A       - an n x n Matrix, where n is the dimension of the Lie algebra 𝔤; a transformation mapping 𝔤 to 𝔤

     parm    - a set of parameters appearing in the Matrix A or in the Lie algebra 𝔤

 

Description

Examples

Description

• 

A matrix A is a derivation for a Lie algebra 𝔤  if the associated linear transformation mapping LA: 𝔤  𝔤  satisfies  LA(x, y) = LAx, y +x, LAy for all x, y   𝔤.

• 

Query(Alg, A, "Derivation") returns true if the matrix A or transformation defines a derivation for the Lie algebra g and false otherwise.

• 

Query(Alg, A, parm, "Derivation") returns a 4-tuple TF, Eq, Soln, B.  Here TF is true if Maple finds a set of values for the parameters for which the Matrix or transformation A is a derivation; Eq is the defining set of equations for the parameters parm in order that the matrix A be a derivation; Soln is a list of solutions to the equations Eq; and B is the list of Matrices obtained by evaluating A on the solutions in the list Soln.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra and display the Lie bracket multiplication table.

L1_DGLieAlgebra,Alg1,4,1,4,1,1,2,3,1,1,2,4,2,1,3,4,1,0

L1:=e1,e4=e1,e2,e3=e1,e2,e4=e2

(2.1)

DGsetupL1:

Alg1 > 

MultiplicationTableLieBracket

e1,e4=e1,e2,e3=e1,e2,e4=e2

(2.2)

 

Because of the Jacobi identities,  A = adx is always a derivation for any x in the Lie algebra.  For example:

Alg1 > 

AAdjointe12e3+e4

A:=1201010000000000

(2.3)
Alg1 > 

QueryAlg1,A,Derivation

true

(2.4)

 

Example 2.

To illustrate the second use of Query with keyword "derivation", we find all the derivations of the above Lie algebra of the special form given by the following matrix A, which depends upon 3 parameters a1, a2, a3.

Alg1 > 

AMatrix0,0,a1,a2,0,0,0,a3,0,0,0,0,0,0,0,0

A:=00a1a2000a300000000

(2.5)
Alg1 > 

TTransformationAlg1,Alg1,A

T:=e1,0e1,e2,0e1,e3,a1e1,e4,a2e1+a3e2

(2.6)
Alg1 > 

TF,Eq,Soln,DerQueryAlg1,T,a1,a2,a3,Derivation

TF,Eq,Soln,Der:=true,0,a3+a1,a1=a3,a2=a2,a3=a3,e1,0e1,e2,0e1,e3,a3e1,e4,a2e1+a3e2

(2.7)

 

We conclude that there is a 2-parameter family of derivations of the type A and these are given by a1=a3.  We can confirm this result with another call to Query.

Alg1 > 

QueryAlg1,Der1,Derivation

true

(2.8)

See Also

DifferentialGeometry

LieAlgebras

Adjoint

Derivations

MultiplicationTable

Query

Transformation

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam