form the interior product of a vector or a list of vectors with a differential form - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : DifferentialGeometry/Hook

DifferentialGeometry[Hook] - form the interior product of a vector or a list of vectors with a differential form

Calling Sequence

Hook(X, omega)

Hook(Y, T, indexlist)

Parameters

X

-

a vector or a list of vectors

omega

-

a differential p-form

Y

-

a list of vectors or differential 1-forms

T

-

a tensor

indexlist

-

(optional) a list of positive integers labeling various arguments of the tensor T 

Description

• 

If  X is a vector and omega a differential p-form, then the interior product or hook of  X and omega is the differential (p - 1)-form theta = Hook(X, omega) defined by theta(Y1, Y2, ..., Yq) = omega(X, Y1, Y2, ..., Yq), where q = p - 1 and Y1, Y2, ...,  Yq are arbitrary vectors.

• 

More generally, given a list of vectors [X1, X2, ... , Xr] and a differential p-form omega then theta = Hook([X1, X2, ..., Xr], omega) is the differential form of degree p - r defined by theta(Y1, Y2, ..., Yq) = omega(X1, X2, ..., Xr, Y1, Y2, ..., Yq), where q = p - r and Y1, Y2, ...,Yq are arbitrary vectors.

• 

If  Y = [X1, X2, alpha1, ..., Xr] is a list of  vectors or differential 1-forms and T is a tensor of total rank s = r, then the second calling sequence evaluates the scalar T(X1, X2, alpha1, ... , Xr).  If s > r and  indexlist = [i_1, i_2, ..., i_r], then Hook(Y, T, indexlist) calculates the rank s - r tensor obtained by evaluating the i_k-th argument of the tensor T on the k-th element of the list Y, for k = 1, 2, ... r.

• 

This command is part of the DifferentialGeometry package, and so can be used in the form Hook(...) only after executing the command with(DifferentialGeometry).  It can always be used in the long form DifferentialGeometry:-Hook.

Examples

withDifferentialGeometry:

DGsetupx,y,z,M:

 

Example 1.

Define vectors X1, X2, X3.

X1:=evalDGaD_x+bD_y+cD_z

X1:=aD_x+bD_y+cD_z

(1)

X2:=evalDG2D_yD_z

X2:=2D_y`*`D_z

(2)

X3:=evalDGD_x+D_z

X3:=`*`D_x+`*`D_z

(3)

Define a 1-form alpha, a 2-form beta and a 3-form omega.

α:=evalDG3dx+4dy7dz

α:=3dx+4dy7dz

(4)

β:=evalDGdx &w dy3dx &w dz

β:=`*`dxdy3dxdz

(5)

ω:=evalDGdx &w dy &w dz

ω:=`*`dxdydz

(6)

Compute various interior products.  Note that Hook(Y, Hook(X, omega) = Hook([X, Y], omega).

f:=HookX1,α

f:=7c+4b+3a

(7)

θ:=HookX1,β

θ:=3c+bdx+ady3adz

(8)

HookX2,θ

5a

(9)

HookX1,X2,β

5a

(10)

HookX2,X1,β

5a

(11)

HookX1,X2,X3,ω

2ab2c

(12)

 

Example 2.

Evaluate a  type (1,3) tensor T on various vectors and differential forms.

T:=evalDG2dx &t dy &t dz &t D_y3dy &t dx &t dz &t D_z

T:=2dxdydzD_y3dydxdzD_z

(13)

HookD_x,D_y,D_z,dy,T

2

(14)

HookX1,X3,T

3bdzD_z

(15)

HookX1,X2,X3,α,T

16a

(16)

HookD_y,dz,T,1,4

3dxdz

(17)

HookX1,X2,T,1,3

3bdxD_z2adyD_y

(18)

 

Example 3. 

The interior product can be calculated for abstract forms.

DGsetupω1,ω2,ω3,β1=dgform2,dω1=ω2 &w ω3,dω2=β1,M3

frame name: M3

(19)

HookD_omega1,ω1;HookD_omega1,β1

1

`*`ι1β1

(20)

Structure equations for interior products can be specified.

DGsetupM3,,hookD_omega1,β1=ω3

updated frame: M3

(21)

HookD_omega1,β1

`*`ω3

(22)
M3 > 

See Also

DifferentialGeometry, ContractIndices


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam