DifferentialGeometry - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : DifferentialGeometry/DGbasis

DifferentialGeometry

  

DGbasis

  

calculate the dual basis to a given basis of vectors or 1-forms

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

DGbasis(S, option)

Parameters

S

-

a list of vectors, forms or tensors

option

-

the keyword argument method = "real"

Description

• 

Let S = [S_1, S_2, ..., S_k] be a list of  vectors, matrices, differential forms, or tensors. Then DGbasis(S) returns a sublist B = [S_i_1, S_i_2, ..., S_i_r] of S such that the elements of B define a basis for the subspace spanned by the elements of S.  Thus the elements of B are linearly independent and span(S) = span(B).

• 

With the  keyword argument method = "real", the set S is viewed as a vector space of vectors, forms or tensors over the real numbers and the basis is calculated using real number coefficients instead of general expression (function) coefficients.

• 

This command is part of the DifferentialGeometry package, and so can be used in the form DGbasis(...) only after executing the command with(DifferentialGeometry).  It can always be used in the long form DifferentialGeometry:-DGbasis.

Examples

withDifferentialGeometry:

 

Initialize a 4-dimensional manifold M with coordinates [x, y, z, w].

DGsetupx,y,z,w,M:

 

Example 1.

Find a basis B1 for the span of the vectors in S1.

S1evalDGD_x,D_x+D_y,D_y,0 &mult D_x,D_yD_z,D_z,D_x+D_y+D_w

S1D_x,D_x+D_y,D_y,0D_x,D_yD_z,D_z,D_x+D_y+D_w

(1)

B1DGbasisS1

B1D_x,D_x+D_y,D_yD_z,D_x+D_y+D_w

(2)

Use the GetComponents command to check that each vector in S is a unique linear combination of the vectors in B. (GetComponents returns the coefficients of the vectors in S as linear combination of the vectors in B.  If one of the vectors in S is not a linear combination of the vectors in B, an empty list [] is returned).

GetComponentsS1,B1

1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,1

(3)

The basis B1 is not the simplest basis for S1.  Another choice of basis for S1 can be found using the command CanonicalBasis.

Tools:-CanonicalBasisB1,D_x,D_y,D_z,D_w

D_x,D_y,D_z,D_w

(4)

 

Example 2.

Find a basis for the span of the tensors in S2.

S2evalDGdx &t dx,dy &t dx,dx &t dx+dy &t dx,dy &t dy

S2dxdx,dydx,dxdx+dydx,dydy

(5)

DGbasisS2

dxdx,dydx,dydy

(6)

Example 3.

DGbasis also accepts a list of Matrices or Vectors.

S3Matrix0,1,0,0,Matrix1,0,0,1,Matrix1,1,0,1,Matrix1,0,0,1

S30100,1001,1101,1001

(7)

 

DGbasisS3

0100,1001,1001

(8)

Example 4.

S4evalDGD_x,xD_x,3x4D_x

S4D_x,xD_x,3x4D_x

(9)

Here is the basis for S4 using function coefficients.

DGbasisS4

D_x

(10)

Here is the basis for S4 using real number coefficients.

DGbasisS4,method=real

D_x,xD_x

(11)
M > 

See Also

DifferentialGeometry

CanonicalBasis

GetComponents

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam