DifferentialAlgebra[Tools] - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : Differential Algebra : Tools : DifferentialAlgebra/Tools/Tail

DifferentialAlgebra[Tools]

  

Tail

  

returns the tail of a differential polynomial

 

Calling Sequence

Parameters

Options

Description

Examples

Calling Sequence

Tail(ideal, v, opts)

Tail(p, v, R, opts)

Tail(L, v, R, opts)

Parameters

ideal

-

a differential ideal

p

-

a differential polynomial

v (optional)

-

a variable

L

-

a list or a set of differential polynomials

R

-

a differential polynomial ring or ideal

opts (optional)

-

a sequence of options

Options

• 

The opts arguments may contain one or more of the options below.

• 

fullset = boolean. In the case of the function call Tail(ideal,v), applies the function also over the differential polynomials which state that the derivatives of the parameters are zero. Default value is false.

• 

notation = jet, tjet, diff or Diff. Specifies the notation used for the result of the function call. If not specified, the notation of the first argument is used.

• 

memout = nonnegative. Specifies a memory limit, in MB, for the computation. Default is zero (no memory out).

Description

• 

The function call Tail(p,v,R) returns the tail of p regarded as a univariate polynomial in v, that is the differential polynomial p, regarded as a univariate polynomial in v, minus its leading monomial with respect to this variable, If p does not depend on v then the function call returns 0.

• 

The function call Tail(L,v,R) returns the list or the set of the tails of the elements of L with respect to v.

• 

If ideal is a regular differential chain, the function call Tail(ideal,v) returns the list of the tails of the chain elements. If ideal is a list of regular differential chains, the function call Tail(ideal,v) returns a list of lists of tails.

• 

When the parameter v is omitted, it is understood to be the leading derivative of the processed differential polynomial with respect to the ranking of R, or the one of its embedding polynomial ring, if R is an ideal. In that case, p must be non-numeric.

• 

This command is part of the DifferentialAlgebra:-Tools package. It can be called using the form Tail(...) after executing the command with(DifferentialAlgebra:-Tools). It can also be directly called using the form DifferentialAlgebra[Tools][Tail](...).

Examples

withDifferentialAlgebra:withTools:

RDifferentialRingderivations=x,y,blocks=v,u,p,parameters=p

R:=differential_ring

(1)

The tail, with respect to the leading derivative

Tailux,yvyu+p,R

u+p

(2)

idealRosenfeldGroebnerux24u,ux,yvyu+p,vx,xux,R

ideal:=regular_differential_chain,regular_differential_chain

(3)

Equationsideal1

vx,xux,puxuyuuxuy+4uvy,ux24u,uy22u

(4)

The tails of the equations, with respect to ux

Tailideal1,ux

vx,x,4vyu,4u,0

(5)

See Also

DifferentialAlgebra

LeadingDerivative

LeadingCoefficient

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam