DifferentialAlgebra[Tools] - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : Differential Algebra : Tools : DifferentialAlgebra/Tools/Initial

DifferentialAlgebra[Tools]

  

Initial

  

returns the initial of a differential polynomial

 

Calling Sequence

Parameters

Options

Description

Examples

Calling Sequence

Initial(ideal, opts)

Initial(p, R, opts)

Initial(L, R, opts)

Parameters

ideal

-

a differential ideal

p

-

a differential polynomial

L

-

a list or a set of differential polynomials

R

-

a differential polynomial ring or ideal

opts (optional)

-

a sequence of options

Options

• 

The opts arguments may contain one or more of the options below.

• 

fullset = boolean. In the case of the function call Initial(ideal), applies the function also over the differential polynomials which state that the derivatives of the parameters are zero. Default value is false.

• 

notation = jet, tjet, diff or Diff. Specifies the notation used for the result of the function call. If not specified, the notation of the first argument is used.

• 

memout = nonnegative. Specifies a memory limit, in MB, for the computation. Default is zero (no memory out).

Description

• 

The function call Initial(p,R) returns the initial of p with respect to the ranking of R, or of its embedding polynomial ring, if R is an ideal. It is assumed that p is non-numeric.

• 

The function call Initial(L,R) returns the list or the set of the initials of the elements of L with respect to the ranking of R.

• 

If ideal is a regular differential chain, the function call Initial(ideal) returns the list of the initials of the chain elements. If ideal is a list of regular differential chains, the function call Initial(ideal) returns a list of lists of initials.

• 

This command is part of the DifferentialAlgebra:-Tools package. It can be called using the form Initial(...) after executing the command with(DifferentialAlgebra:-Tools). It can also be directly called using the form DifferentialAlgebra[Tools][Initial](...).

Examples

withDifferentialAlgebra:withTools:

RDifferentialRingderivations=x,y,blocks=v,u,p,parameters=p

R:=differential_ring

(1)

Initialux,yvyu+p,R

vy

(2)

idealRosenfeldGroebnerux24u,ux,yvyu+p,vx,xux,R

ideal:=regular_differential_chain,regular_differential_chain

(3)

Equationsideal1

vx,xux,puxuyuuxuy+4uvy,ux24u,uy22u

(4)

Initialideal1

1,4u,1,1

(5)

See Also

DifferentialAlgebra

LeadingDerivative

LeadingCoefficient

Inequations

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam