DEtools - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : Lie Symmetry Method : Commands for ODEs : DEtools/normalG2

DEtools

  

normalG2

  

calculate the normal form of the generators of a 2-D solvable Lie algebra

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

normalG2(X1, X2, y(x))

Parameters

X1, X2

-

lists of the coefficients of symmetry generators (pairs of infinitesimals) as in ξ,η

y(x)

-

'dependent variable'; it can be any indeterminate function of one variable

Description

• 

The normalG2 command receives two pairs of infinitesimals, and an indication of the dependent variable y(x), and returns a sequence of infinitesimals Y1,Y2, each one of the form ξ,η, such that Y1 and Y2 are built using linear combinations of X1 and X2, and Y1,Y2=Y1, where Y1,Y2 is the commutator of the two infinitesimals.

• 

This command presently accepts only point symmetries, and when the given X1,X2 do not form a solvable algebra (the problem has no solution), the command returns FAIL.

• 

This function is part of the DEtools package, and so it can be used in the form normalG2(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[normalG2](..).

Examples

withDEtools:

X1ax,cy

X1:=ax,cy

(1)

X2ax,cy+y2

X2:=ax,cy+y2

(2)

X1 and X2 are not in "normal form"; that is, their commutator is not equal to one of them:

XcommutatorX1,X2,yx

_ξ=0,_η=cy2

(3)

The normalized X1,X2

YnormalG2X1,X2,yx

Y:=0,y2,axc,cy+y2c

(4)

The commutator of the generators Y satisfies Y1,Y2=Y1.

XcommutatorY1,Y2,yx

_ξ=0,_η=y2

(5)

See Also

DEtools

DEtools[Xcommutator]

dsolve,Lie

PDEtools

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam