transforms a given generator of a one-parameter Lie group to the indicated "gauge" - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : Lie Symmetry Method : Commands for ODEs : DEtools/Xgauge

DEtools[Xgauge] - transforms a given generator of a one-parameter Lie group to the indicated "gauge"

Calling Sequence

Xgauge([xi,eta], y(x), xi=expr)

Xgauge([xi,eta], y(x), eta=expr)

Xgauge([xi,eta], y(x), xi=expr1, eta=expr2)

Parameters

[xi, eta]

-

list of the coefficients of the symmetry generator (infinitesimals)

y(x)

-

'dependent variable'; it can be any indeterminate function of one variable

xi=expr

-

(optional) equation having xi or _xi on the left hand side and any algebraic expression on the right hand side

eta=expr

-

(optional) equation having eta or _eta on the left hand side and any algebraic expression on the right hand side

Description

• 

The Xgauge command receives a list of a pair of infinitesimals of a one-parameter Lie group, the dependent variable y(x), and optionally the "gauge" in the form of ξ=expr or η=expr. It returns the given infinitesimals "gauged" to satisfy the indication received. If no gauge is given, the command returns the given generator rewritten in the most general form by introducing an arbitrary function.

• 

This command also works with dynamical symmetries, in which case the ODE assumed to be invariant under the given infinitesimals is also required as an argument. The right hand side of the given nth order ODE is then used to replace the nth order derivatives of the dependent variable appearing in the infinitesimal generator.

• 

This function is part of the DEtools package, and so it can be used in the form Xgauge(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[Xgauge](..).

Examples

withDEtools:

X:=x,x+y

X:=x,x+y

(1)

The general first order ODE invariant under X

ODE:=equinvX,yx

ODE:=ⅆⅆxyx=lnx+_F1xlnxyxx

(2)

symtestX,ODE

0

(3)

X rewritten in the gauge xi=0

XgaugeX,yx,ξ=0

0,_y1x+x+y

(4)

If the ODE is given, its right hand side is used to replace the highest derivative (in this example the ODE is of first order).

`X_xi=0`:=XgaugeX,ODE,ξ=0

X_xi=0:=0,y+_F1xlnxyxlnx+1x

(5)

So, the above is just the original symmetry X rewritten in the gauge xi=0. Let's test this result.

symtest`X_xi=0`,ODE

0

(6)

The general form in which X above can be rewritten is as follows:

X

x,x+y

(7)

X_general:=XgaugeX,ODE

X_general:=_F2x,y,y+_F1xlnxyxlnx+1x+_F2x,y_F1xlnxyx+_F2x,ylnx

(8)

where _F2(x, y) is an arbitrary function of its arguments, introduced by Xgauge. This result can be tested as well.

symtestX_general,ODE

0

(9)

See Also

DEtools, dsolve,Lie, eta_k, infgen, PDEtools, symgen, Xchange, Xcommutator


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam