
Component State
A new construct in the DocumentTools:-Components package called State allows you to 
manage computation state that will survive through a saved worksheet and through 
restart.  Programming your applications using this construct also makes it easier to embed
multiple different versions of the same application, with different data and options. 
Consider the following two interactive pie chart examples created using the package 
below.  



The PieChartPlot command module is defined below.  The SetDefaults command creates a
state variable, which is used to hold all mutable information relating to this application, 
including the plot data and options settings.  Additionally, the InsertContent command 
now accepts a state option that can be used with the state component variable name.  

GetProperty("",
'contentstate') in order to access the state of the application that is being replaced.  In 
this way it can inherit whatever properties it wants from the previous application and 
preserve them when displaying the new data.



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

PieChartPlot := module()
uses DT=DocumentTools, DL=DocumentTools:-Layout, DC=DocumentTools:-Components;

# define the color options that will appear in the color combo box
local colorschemes := table({

"default"=NULL,  
    "green/blue" = ('color'="Niagara_LeafGreen".."Niagara_DeepBlue"),
   "blue"=('color'="CornflowerBlue".."DarkBlue"),
   "red"=('color'="DarkRed".."Feldspar"),
   "green"=('color'="SeaGreen".."DarkSeaGreen"),
   "brown"=('color'="Niagara_Cinnamon".."Tan"),
   "purple"=('color'="DarkOrchid".."Plum"),
   "yellow"=('color'="YellowGreen".."Yellow"),
   "blue/rose"=('color'="Spring_Blue".."Spring_Rose"),
   "green/violet"=('color'="Spring_YellowGreen".."Spring_Violet"),
   "dark gray"=('color'="DarkGray".."Nautical_DarkGray"),
   "light gray"=('color'="Nautical_GrayViolet".."LightGray"),
   "yellow/red"=('color'="Yellow".."Red"),
    "bright"=('color'="Yellow"),
   "tan"=('color'="SaddleBrown".."Goldenrod"),
    "light blue"=('color'="SteelBlue".."Cyan")

});

# create and initialize the state variable
local SetDefaults := proc( data )

local stateVar, stateXML, prev;
    # check if there was prior state in the previous output
    prev := DT:-GetProperty("",'contentstate');
 if prev::`module (̀'signature') and prev:-signature = "PieChart" then

prev:-xmap := NULL;
prev:-Data := data;

  return prev;
end if;

  
stateXML := DC:-State('stateVar','Data'=data,'stateComponent','xmap','Options','signature'="PieChart");
stateVar:-stateComponent := stateXML;

stateVar:-Options := table({"annular"="false", "render3d"="false", "explode"=NULL, "outline"="true",
"sector"="0..360", "datasetlabels"="default", "color"="default" });

stateVar:-xmap := NULL;
SetPlot(stateVar);
return stateVar;

end proc;

     # Use the state options to generate the pie chart.
     # Note that this procedure does not fetch the option values from the components -- those values are all
     # recorded in the state variable as the option control's action is triggered.

local SetPlot := proc( sv ) 
local p := Statistics:-PieChart(

sv:-Data
,'explode'=[`if`(sv:-Data::list(equation),sv:-Options["explode"],parse(sv:-Options["explode"]))]
,'annular'=evalb(sv:-Options["annular"]="true")
,'render3d'=evalb(sv:-Options["render3d"]="true")
,'style'=`if`(sv:-Options["outline"]="true",'polygonoutline','polygon')
,'sector'=parse(sv:-Options["sector"])
,'datasetlabels'=parse(sv:-Options["datasetlabels"])
,colorschemes[sv:-Options["color"]]

);
if sv:-xmap <> NULL then

DT:-SetProperty(sv:-xmap["piePlot"],'value',p);
end if;
return p;

end proc;

# Define the user-interface -- a table with a plot component on one side and options on the other.
local GenApp := proc( sv )

local xml;

xml := DL:-Worksheet( 
  DL:-Table( DL:-Column('weight'=70), DL:-Column('weight'=30),
    'interior'='none', 'exterior'='none', 'hiddenborderdisplay'='never', 'width'=800, 'widthmode'='pixels',
    DL:-Row( 
      DL:-Cell(
        DL:-Textfield('alignment'='right',
          DC:-Plot('identity'="piePlot",'showborders'=false,SetPlot(sv)))
        ),
      DL:-Cell(
        DL:-Section(
          DL:-Title(DL:-Textfield("Options",'alignment'='left','style'='Heading3','layout'='Heading3')),



> > 

Small Example with Explanation

This example defines an application that uses a slider to move along the x-axis of a plot.  
When you drag the slider to the right, the plot view will move to the right along the x-axis.  
The slider will then snap back to the middle position, allowing you to grab it and move it to
the right again.  In this way you can move further and further along the x-axis.

The application can be described as follows:

Highlighted in orange is the variable created as part of the State component 
description.  Make sure this occurs earlier in the code than anything that uses it.

moveLeftRightApp := proc( fn )

    local stateVariable, xmap;

    uses DocumentTools, DocumentTools:-Layout, DocumentTools:-

Components;

    #define the application layout and components

    xmap := InsertContent( Worksheet( Table( Column(), Row( Cell( 

Textfield(

       State('stateVariable', position = 0, func = fn),

       Plot(identity="Plot0"), 

       "\n", 

       Slider(-10..10, 'identity'="Slider0", 'position'=0, 

'width'=400, 

              'action'=sprintf("slideX(%s,\"Plot0\",\"Slider0\")

",stateVariable))) 

    ) ) ) ),

    'output'=table );

    #set the initial plot (slideX is defined below)

    slideX(stateVariable,xmap["Plot0"],xmap["Slider0"]);

end proc:

below.  It gets passed the state variable, from which it can see and update the current 



> > 

> > 

position offset.  The position records how far left or right we have scrolled along the x-axis. 
We get the slider value, adjust our position, redraw the moved plot, and snap the slider 
back to the middle.

slideX := proc( stateVar, plotCompName, sliderCompName )

    local delta, p;

    delta := DocumentTools:-GetProperty(sliderCompName,'value');

    stateVar:-position := stateVar:-position + delta;

    p := plot(stateVar:-func,x=stateVar:-position-10..stateVar:-

position+10, 'view'=['default',-1..1]);

    DocumentTools:-SetProperty(plotCompName,'value', p);

    DocumentTools:-SetProperty(sliderCompName,'value',0);

end proc:

Note that the above two procedures could be put in startup code (via Edit>Startup 
Code), or they can be auto-initialized by setting Format>AutoExecute>Set.  If either is 
done, when this worksheet is loaded both of these procedure definitions will be executed.

Now that the app and handler are defined, we can run a command to insert the content:

moveLeftRightApp( Re(x^(-.1))*sin(x) );



Peeking into Existing Content To "Remember" Settings

In the following modification to moveLeftRightApp, we call DocumentTools:-GetProperty
("",'contentstate');   This will return non-NULL if the content that we are inserting is 
going to replace existing content. We then additionally check if we are about to replace 

signatures match, then we can initialize the new app based on some of the settings of the 
old app.  For example, here we start at the same position that was previously left.

Peeking into Existing Content To "Remember" Settings

In the following modification to moveLeftRightApp, we call DocumentTools:-GetProperty
("",'contentstate');   This will return non-NULL if the content that we are inserting is 
going to replace existing content. We then additionally check if we are about to replace 

signatures match, then we can initialize the new app based on some of the settings of the 
old app.  For example, here we start at the same position that was previously left.



> > 

Two things need to happen:

Check for previous content and access that content's state.

Call InsertContent with the state option, giving it the name of the state variable.

moveLeftRightApp2 := proc( fn )

    local stateVariable, prev, pos, xmap;

    uses DocumentTools, DocumentTools:-Layout, DocumentTools:-

Components;

    # check if there was prior state in the previous output

    prev := GetProperty("", 'contentstate');

    if prev::`module`('signature') and prev:-

signature = "moveLeftRight" then

        pos := prev:-position;

    else

        pos := 0;

    end if;

    #define the application layout and components

    xmap := InsertContent( Worksheet( Table( Column(), Row( Cell( 

Textfield(

       State('stateVariable', 'position' = pos, 'func' = fn, 

'signature'="moveLeftRight"),

       Plot(identity="Plot0"), 

       "\n", 

       Slider(-10..10, 'identity'="Slider0", 'position'=0, 

'width'=400, 

              'action'=sprintf("slideX(%s,\"Plot0\",\"Slider0\")

",stateVariable))) 

    ) ) ) ),

    'state'=convert(stateVariable,string),

    'output'=table );

    #set the initial plot (slideX is defined below)

    slideX(stateVariable,xmap["Plot0"],xmap["Slider0"]);

end proc:



> > 

When you execute the following example with different values for the negative exponent, 
the x-axis offset remains the same between executions.

moveLeftRightApp2( Re(x^(-.5))*sin(x) );> > 

When you execute the following example with different values for the negative exponent, 
the x-axis offset remains the same between executions.

moveLeftRightApp2( Re(x^(-.5))*sin(x) );


