Physics: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=183
en-us2015 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemFri, 22 May 2015 11:38:51 GMTFri, 22 May 2015 11:38:51 GMTNew applications in the Physics categoryhttp://www.mapleprimes.com/images/mapleapps.gifPhysics: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=183
Time Series Analysis: Forecasting Average Global Temperatures
http://www.maplesoft.com/applications/view.aspx?SID=153791&ref=Feed
Maple includes powerful tools for accessing, analyzing, and visualizing time series data. This application works with global temperature data to demonstrate techniques for analyzing time series data sets using the TimeSeriesAnalysis package, including visualizing trends and modeling future global temperatures.<img src="/view.aspx?si=153791/thumb.jpg" alt="Time Series Analysis: Forecasting Average Global Temperatures" align="left"/>Maple includes powerful tools for accessing, analyzing, and visualizing time series data. This application works with global temperature data to demonstrate techniques for analyzing time series data sets using the TimeSeriesAnalysis package, including visualizing trends and modeling future global temperatures.153791Tue, 21 Apr 2015 04:00:00 ZMaplesoftMaplesoftThe Comet 67P/Churyumov-Gerasimenko, Rosetta & Philae
http://www.maplesoft.com/applications/view.aspx?SID=153706&ref=Feed
<p> Abstract<br /><br />The Rosetta space probe launched 10 years ago by the European Space Agency (ESA) arrived recently (November 12, 2014) at the site of the comet known as 67P/Churyumov-Gerasimenco after a trip of 4 billions miles from Earth. After circling the comet, Rosetta released its precious load : the lander Philae packed with 21 different scientific instruments for the study of the comet with the main purpose : the origin of our solar system and possibly the origin of life on our planet.<br /><br />Our plan is rather a modest one since all we want is to get , by calculations, specific data concerning the comet and its lander.<br />We shall take a simplified model and consider the comet as a perfect solid sphere to which we can apply Newton's laws.<br /><br />We want to find:<br /><br />I- the acceleration on the comet surface ,<br />II- its radius,<br />III- its density,<br />IV- the velocity of Philae just after the 1st bounce off the comet (it has bounced twice),<br />V- the time for Philae to reach altitude of 1000 m above the comet .<br /><br />We shall compare our findings with the already known data to see how close our simplified mathematical model findings are to the duck-shaped comet already known results.<br />It turned out that our calculations for a sphere shaped comet are very close to the already known data.<br /><br />Conclusion<br /><br />Even with a shape that defies the application of any mechanical laws we can always get very close to reality by adopting a simplified mathematical model in any preliminary study of a complicated problem.<br /><br /></p><img src="/applications/images/app_image_blank_lg.jpg" alt="The Comet 67P/Churyumov-Gerasimenko, Rosetta & Philae" align="left"/><p> Abstract<br /><br />The Rosetta space probe launched 10 years ago by the European Space Agency (ESA) arrived recently (November 12, 2014) at the site of the comet known as 67P/Churyumov-Gerasimenco after a trip of 4 billions miles from Earth. After circling the comet, Rosetta released its precious load : the lander Philae packed with 21 different scientific instruments for the study of the comet with the main purpose : the origin of our solar system and possibly the origin of life on our planet.<br /><br />Our plan is rather a modest one since all we want is to get , by calculations, specific data concerning the comet and its lander.<br />We shall take a simplified model and consider the comet as a perfect solid sphere to which we can apply Newton's laws.<br /><br />We want to find:<br /><br />I- the acceleration on the comet surface ,<br />II- its radius,<br />III- its density,<br />IV- the velocity of Philae just after the 1st bounce off the comet (it has bounced twice),<br />V- the time for Philae to reach altitude of 1000 m above the comet .<br /><br />We shall compare our findings with the already known data to see how close our simplified mathematical model findings are to the duck-shaped comet already known results.<br />It turned out that our calculations for a sphere shaped comet are very close to the already known data.<br /><br />Conclusion<br /><br />Even with a shape that defies the application of any mechanical laws we can always get very close to reality by adopting a simplified mathematical model in any preliminary study of a complicated problem.<br /><br /></p>153706Mon, 17 Nov 2014 05:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyPhoton Exposure
http://www.maplesoft.com/applications/view.aspx?SID=153684&ref=Feed
<p>This application uses a blackbody model of the sun to calculate the number of photons reaching a cameras sensor. It demonstrates the "Sunny 16" model of exposure.</p><img src="/view.aspx?si=153684/e771d3d2526673d4a8bc8221b6d228ee.gif" alt="Photon Exposure" align="left"/><p>This application uses a blackbody model of the sun to calculate the number of photons reaching a cameras sensor. It demonstrates the "Sunny 16" model of exposure.</p>153684Mon, 29 Sep 2014 04:00:00 ZJohn DoleseJohn DoleseDescartes & Mme La Marquise du Chatelet And The Elastic Collision of Two Bodies
http://www.maplesoft.com/applications/view.aspx?SID=153515&ref=Feed
<p><strong><em> ABSTRACT<br /> <br /> The Marquise</em></strong> <strong><em>du Chatelet in her book " Les Institutions Physiques" published in 1740, stated on page 36, that Descartes, when formulating his laws of motion in an elastic collision of two bodies B & C (B being more massive than C) <span >having the same speed v</span>, said that t<span >he smaller one C will reverse its course </span>while <span >the more massive body B will continue its course in the same direction as before</span> and <span >both will have again the same speed v.<br /> <br /> </span>Mme du Chatelet, basing her judgment on theoretical considerations using <span >the principle of continuity</span> , declared that Descartes was <span >wrong</span> in his statement. For Mme du Chatelet the larger mass B should reverse its course and move in the opposite direction. She mentioned nothing about both bodies B & C as <span >having the same velocity after collision as Descartes did</span>.<br /> <br /> At the time of Descartes, some 300 years ago, the concept of kinetic energy & momentum as we know today was not yet well defined, let alone considered in any physical problem.<br /> <br /> Actually both Descartes & Mme du Chatelet may have been right in some special cases but not in general as the discussion that follows will show.</em></strong></p><img src="/view.aspx?si=153515/Elastic_Collision_image1.jpg" alt="Descartes & Mme La Marquise du Chatelet And The Elastic Collision of Two Bodies" align="left"/><p><strong><em> ABSTRACT<br /> <br /> The Marquise</em></strong> <strong><em>du Chatelet in her book " Les Institutions Physiques" published in 1740, stated on page 36, that Descartes, when formulating his laws of motion in an elastic collision of two bodies B & C (B being more massive than C) <span >having the same speed v</span>, said that t<span >he smaller one C will reverse its course </span>while <span >the more massive body B will continue its course in the same direction as before</span> and <span >both will have again the same speed v.<br /> <br /> </span>Mme du Chatelet, basing her judgment on theoretical considerations using <span >the principle of continuity</span> , declared that Descartes was <span >wrong</span> in his statement. For Mme du Chatelet the larger mass B should reverse its course and move in the opposite direction. She mentioned nothing about both bodies B & C as <span >having the same velocity after collision as Descartes did</span>.<br /> <br /> At the time of Descartes, some 300 years ago, the concept of kinetic energy & momentum as we know today was not yet well defined, let alone considered in any physical problem.<br /> <br /> Actually both Descartes & Mme du Chatelet may have been right in some special cases but not in general as the discussion that follows will show.</em></strong></p>153515Fri, 07 Mar 2014 05:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyMeasuring Water Flow of Rivers
http://www.maplesoft.com/applications/view.aspx?SID=153480&ref=Feed
In this guest article in the Tips & Techniques series, Dr. Michael Monagan discusses the art and science of measuring the amount of water flowing in a river, and relates his personal experiences with this task to its morph into a project for his calculus classes.<img src="/view.aspx?si=153480/thumb.jpg" alt="Measuring Water Flow of Rivers" align="left"/>In this guest article in the Tips & Techniques series, Dr. Michael Monagan discusses the art and science of measuring the amount of water flowing in a river, and relates his personal experiences with this task to its morph into a project for his calculus classes.153480Fri, 13 Dec 2013 05:00:00 ZProf. Michael MonaganProf. Michael MonaganSymmetry of two-dimensional hybrid metal-dielectric photonic crystal within MAPLE
http://www.maplesoft.com/applications/view.aspx?SID=151383&ref=Feed
<p>Hybrid structures were made by assembling monolayers (MLs) of closely packed colloidal microspheres on a metal-coated glass substrate . In fact, this architecture is one of several realizations of hybrid plasmonic-photonic crystals (PHs), which differ in photonic crystals dimensionality and metal ﬁlm corrugation [1,2].</p>
<p>The main challenge to us were exploring of those properties of structures which are caused by their space symmetry. In particular, it was necessary to establish the so-called "rules of selection", i.e. the list of the allowed transitions between electronic states of different symmetry and energy that can be induced by light of varying polarization. Additional interest for us was to demonstrate the possibilities of MAPLE within this specific field.</p><img src="/view.aspx?si=151383/440fb9a2994e797b26c18564d860131b.gif" alt="Symmetry of two-dimensional hybrid metal-dielectric photonic crystal within MAPLE" align="left"/><p>Hybrid structures were made by assembling monolayers (MLs) of closely packed colloidal microspheres on a metal-coated glass substrate . In fact, this architecture is one of several realizations of hybrid plasmonic-photonic crystals (PHs), which differ in photonic crystals dimensionality and metal ﬁlm corrugation [1,2].</p>
<p>The main challenge to us were exploring of those properties of structures which are caused by their space symmetry. In particular, it was necessary to establish the so-called "rules of selection", i.e. the list of the allowed transitions between electronic states of different symmetry and energy that can be induced by light of varying polarization. Additional interest for us was to demonstrate the possibilities of MAPLE within this specific field.</p>151383Thu, 05 Sep 2013 04:00:00 ZOlga V. DvornikOlga V. DvornikHohmann Elliptic Transfer Orbit with Animation
http://www.maplesoft.com/applications/view.aspx?SID=151351&ref=Feed
<p>Abstract<br /><br />The main purpose of this article is to show how to use Hohmann elliptic transfer in two situations:<br />a- When one manned spaceship is trying to catch up with an other one <br />on the same circular orbit around Earth.<br />b- When delivering a payload from Earth to a space station on a circular <br />orbit around Earth using 2-stage rocket .<br /><br />The way we set up the problem is as follows:<br />Consider two manned spaceships with astronauts Sally & Igor , the latter<br />lagging behind Sally by a given angle = 4.5 degrees while both are on the same<br />circular orbit C2 about Earth. A 2d lower circular orbit C1 is given. <br />Find the Hohmann elliptic orbit that is tangent to both orbits which allows<br />Sally to maneuver on C1 then to get back to the circular orbit C2 alongside Igor.<br /><br />Though the math was correct , however the final result we found was not !! <br />It was somehow tricky to find the culprit!<br />We have to restate the problem to get the correct answer. <br />The animation was then set up using the correct data. <br />The animation is a good teaching help for two reasons:<br />1- it gives a 'hand on' experience for anyone who wants to fully understand it,<br />2- it is a good lesson in Maple programming with many loops of the type 'if..then'.<br /><br />Warning<br /><br />This particular animation is a hog for the CPU memory since data accumulated <br />for plotting reached 20 MB! This is the size of this article when animation is <br />executed. For this reason and to be able to upload it I left the animation <br />procedure non executed which drops the size of the article to 300KB.<br /><br />Conclusion<br /><br />If I can get someone interested in the subject of this article in such away that he or <br />she would seek further information for learning from other sources, my efforts<br />would be well rewarded.</p><img src="/view.aspx?si=151351/Elliptic_image1.jpg" alt="Hohmann Elliptic Transfer Orbit with Animation" align="left"/><p>Abstract<br /><br />The main purpose of this article is to show how to use Hohmann elliptic transfer in two situations:<br />a- When one manned spaceship is trying to catch up with an other one <br />on the same circular orbit around Earth.<br />b- When delivering a payload from Earth to a space station on a circular <br />orbit around Earth using 2-stage rocket .<br /><br />The way we set up the problem is as follows:<br />Consider two manned spaceships with astronauts Sally & Igor , the latter<br />lagging behind Sally by a given angle = 4.5 degrees while both are on the same<br />circular orbit C2 about Earth. A 2d lower circular orbit C1 is given. <br />Find the Hohmann elliptic orbit that is tangent to both orbits which allows<br />Sally to maneuver on C1 then to get back to the circular orbit C2 alongside Igor.<br /><br />Though the math was correct , however the final result we found was not !! <br />It was somehow tricky to find the culprit!<br />We have to restate the problem to get the correct answer. <br />The animation was then set up using the correct data. <br />The animation is a good teaching help for two reasons:<br />1- it gives a 'hand on' experience for anyone who wants to fully understand it,<br />2- it is a good lesson in Maple programming with many loops of the type 'if..then'.<br /><br />Warning<br /><br />This particular animation is a hog for the CPU memory since data accumulated <br />for plotting reached 20 MB! This is the size of this article when animation is <br />executed. For this reason and to be able to upload it I left the animation <br />procedure non executed which drops the size of the article to 300KB.<br /><br />Conclusion<br /><br />If I can get someone interested in the subject of this article in such away that he or <br />she would seek further information for learning from other sources, my efforts<br />would be well rewarded.</p>151351Wed, 04 Sep 2013 04:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyClassroom Tips and Techniques: Gems 31-35 from the Red Book of Maple Magic
http://www.maplesoft.com/applications/view.aspx?SID=147092&ref=Feed
Five additional "gems" from the Red Book of Maple Magic are detailed. Gem 31 shows how the updated Explore command can be applied to the numeric solution of an initial-value problem containing parameters. Gem 32 shows some list manipulations. Gem 33 clarifies some issues with the contourplot command, while Gem 34 clarifies some issues with the sample option in the plot command. Finally, Gem 36 examines the Equate command, and its alternatives.<img src="/view.aspx?si=147092/thumb.jpg" alt="Classroom Tips and Techniques: Gems 31-35 from the Red Book of Maple Magic" align="left"/>Five additional "gems" from the Red Book of Maple Magic are detailed. Gem 31 shows how the updated Explore command can be applied to the numeric solution of an initial-value problem containing parameters. Gem 32 shows some list manipulations. Gem 33 clarifies some issues with the contourplot command, while Gem 34 clarifies some issues with the sample option in the plot command. Finally, Gem 36 examines the Equate command, and its alternatives.147092Fri, 10 May 2013 04:00:00 ZDr. Robert LopezDr. Robert LopezDerivation of Schwarzschild Metric Using Newman-Penrose Formalism
http://www.maplesoft.com/applications/view.aspx?SID=146772&ref=Feed
<p>This document is an attempt to use the DifferentialGeometry tool to derive a standard metric. The Schwarzschild metric is the simpilist, so will provide a straightforward example of the DifferentialGeometry commands. Instead of plugging the general metric directly into Einstein's equations, we use the Newman-Penrose formalism.<br /><br /></p><img src="/applications/images/app_image_blank_lg.jpg" alt="Derivation of Schwarzschild Metric Using Newman-Penrose Formalism" align="left"/><p>This document is an attempt to use the DifferentialGeometry tool to derive a standard metric. The Schwarzschild metric is the simpilist, so will provide a straightforward example of the DifferentialGeometry commands. Instead of plugging the general metric directly into Einstein's equations, we use the Newman-Penrose formalism.<br /><br /></p>146772Sun, 05 May 2013 04:00:00 ZDr. Michael WatsonDr. Michael WatsonPeriodicity of Sunspots
http://www.maplesoft.com/applications/view.aspx?SID=144592&ref=Feed
<p>This application finds the periodicity of sunspots with two independent approaches</p>
<ul>
<li>a frequency domain transformation of the data, </li>
<li>and autocorrelation. </li>
</ul>
<p>If implemented and interpreted correctly, both approaches should give the same sunspot period. The application uses routines from Maple 17’s new <a href="/products/maple/new_features/signal_processing.aspx">Signal Processing package</a>, and uses historical sunspot data from the National Geophysical Data Center. Additionally, an embedded video component demonstrates how you can zoom into a plot.</p><img src="/view.aspx?si=144592/sunspots.jpg" alt="Periodicity of Sunspots" align="left"/><p>This application finds the periodicity of sunspots with two independent approaches</p>
<ul>
<li>a frequency domain transformation of the data, </li>
<li>and autocorrelation. </li>
</ul>
<p>If implemented and interpreted correctly, both approaches should give the same sunspot period. The application uses routines from Maple 17’s new <a href="/products/maple/new_features/signal_processing.aspx">Signal Processing package</a>, and uses historical sunspot data from the National Geophysical Data Center. Additionally, an embedded video component demonstrates how you can zoom into a plot.</p>144592Wed, 13 Mar 2013 04:00:00 ZMaplesoftMaplesoftAlexander Friedmann's Cosmic Scenarios
http://www.maplesoft.com/applications/view.aspx?SID=142459&ref=Feed
<p>The Russian mathematician and physicist Alexander Friedmann (1888-1925) is well known among relativists, but his contributions to cosmology are largely misunderstood. Even the Royal Swedish Academy of Sciences misrepresented Friedmann's work in the 2011 Nobel Prize scientific background essay. Friedmann was the first physicist who demonstrated that Albert Einstein's general relativity admits non-static solutions, and the universe can expand, oscillate, and be born in a singularity. Friedmann's conclusion was based on his analysis of an elliptic integral; this worksheet employs Maple's utility of handling elliptic integrals to present Friedmann's results graphically. Friedmann's differential equation governing the evolution of the universe based on Einstein's general theory of relativity is also derived using Maple's tensor package. </p><img src="/view.aspx?si=142459/friedmannscenario.jpg" alt="Alexander Friedmann's Cosmic Scenarios" align="left"/><p>The Russian mathematician and physicist Alexander Friedmann (1888-1925) is well known among relativists, but his contributions to cosmology are largely misunderstood. Even the Royal Swedish Academy of Sciences misrepresented Friedmann's work in the 2011 Nobel Prize scientific background essay. Friedmann was the first physicist who demonstrated that Albert Einstein's general relativity admits non-static solutions, and the universe can expand, oscillate, and be born in a singularity. Friedmann's conclusion was based on his analysis of an elliptic integral; this worksheet employs Maple's utility of handling elliptic integrals to present Friedmann's results graphically. Friedmann's differential equation governing the evolution of the universe based on Einstein's general theory of relativity is also derived using Maple's tensor package. </p>142459Sun, 20 Jan 2013 05:00:00 ZDr. Frank WangDr. Frank WangSimulation of a five qubits convolutional code
http://www.maplesoft.com/applications/view.aspx?SID=142318&ref=Feed
We describe in this work a five-qubit quantum convolutional error correcting code and its implementation on a classical computer. The encoding and decoding circuits and an error correction procedure are presented. We will verify that if any X, Y, Z error or any product of them occurs on one or two qubit, this correction always allows to recover the useful information or to obtain a list of possible errors. The originality in this correction is the winning time obtained by measuring only the required syndromes, thus avoiding the decoherence phenomenon. Also, we give the average fidelity for double errors recovered as single errors having same syndrome.<img src="/applications/images/app_image_blank_lg.jpg" alt="Simulation of a five qubits convolutional code" align="left"/>We describe in this work a five-qubit quantum convolutional error correcting code and its implementation on a classical computer. The encoding and decoding circuits and an error correction procedure are presented. We will verify that if any X, Y, Z error or any product of them occurs on one or two qubit, this correction always allows to recover the useful information or to obtain a list of possible errors. The originality in this correction is the winning time obtained by measuring only the required syndromes, thus avoiding the decoherence phenomenon. Also, we give the average fidelity for double errors recovered as single errors having same syndrome.142318Wed, 16 Jan 2013 05:00:00 ZFatiha MerazkaFatiha MerazkaGeneration and Interaction of Solitons
http://www.maplesoft.com/applications/view.aspx?SID=141102&ref=Feed
<p>Classic computer experiments demonstrating the generation of solitons first time, has been published by N. J. Zabusky and M. D. Kruskal in 1965. Considered that was an earlier idea of Enrico Fermi. In 2006, Frank Wang has created a demonstration on the same subject with Maple tools . We would like to show both the origin and the interaction of Korteweg de Vries solitons as a development of approach of above cited publications.</p><img src="/view.aspx?si=141102/fig.jpg" alt="Generation and Interaction of Solitons" align="left"/><p>Classic computer experiments demonstrating the generation of solitons first time, has been published by N. J. Zabusky and M. D. Kruskal in 1965. Considered that was an earlier idea of Enrico Fermi. In 2006, Frank Wang has created a demonstration on the same subject with Maple tools . We would like to show both the origin and the interaction of Korteweg de Vries solitons as a development of approach of above cited publications.</p>141102Tue, 04 Dec 2012 05:00:00 ZS.I. ShyanS.I. ShyanClassroom Tips and Techniques: Slider-Control of Parameters in Numeric Solutions of ODEs
http://www.maplesoft.com/applications/view.aspx?SID=135062&ref=Feed
In the article "Sliders for Parameter-Dependent Curves", and again in the article "Caustics for a Plane Curve", the use of sliders to control parameters was explored. This month's article explores the use of sliders to control parameters in a differential equation that must be solved numerically.<img src="/view.aspx?si=135062/thumb.jpg" alt="Classroom Tips and Techniques: Slider-Control of Parameters in Numeric Solutions of ODEs" align="left"/>In the article "Sliders for Parameter-Dependent Curves", and again in the article "Caustics for a Plane Curve", the use of sliders to control parameters was explored. This month's article explores the use of sliders to control parameters in a differential equation that must be solved numerically.135062Tue, 12 Jun 2012 04:00:00 ZDr. Robert LopezDr. Robert LopezClassroom Tips and Techniques: Fourier Series and an Orthogonal Expansions Package
http://www.maplesoft.com/applications/view.aspx?SID=134198&ref=Feed
The OrthogonalExpansions package contributed to the Maple Application Center by Dr. Sergey Moiseev is considered as a tool for generating a Fourier series and its partial sums. This package provides commands for expansions in 17 other bases of orthogonal functions. In addition to looking at the Fourier series option, this article also considers the Bessel series expansion.<img src="/view.aspx?si=134198/thumb.jpg" alt="Classroom Tips and Techniques: Fourier Series and an Orthogonal Expansions Package" align="left"/>The OrthogonalExpansions package contributed to the Maple Application Center by Dr. Sergey Moiseev is considered as a tool for generating a Fourier series and its partial sums. This package provides commands for expansions in 17 other bases of orthogonal functions. In addition to looking at the Fourier series option, this article also considers the Bessel series expansion.134198Mon, 14 May 2012 04:00:00 ZDr. Robert LopezDr. Robert LopezPhysics in Maple 16
http://www.maplesoft.com/applications/view.aspx?SID=132209&ref=Feed
Maple 16 provides the most significant evolution of the Physics package since its introduction in Maple 11, underscoring Maple's goal of having a state-of-the-art environment for algebraic computations in physics. The Physics package in Maple 16 includes 17 new commands that extend its functionality in vector and tensor analysis, general relativity, and quantum fields. In addition, a vast number of changes were introduced to support the goal of making the computational experience as natural as possible, resembling the paper-and-pencil way of doing computations and providing textbook-quality display of results. This application illustrates some of the new features in the Physics package.<img src="/view.aspx?si=132209/thumb.jpg" alt="Physics in Maple 16" align="left"/>Maple 16 provides the most significant evolution of the Physics package since its introduction in Maple 11, underscoring Maple's goal of having a state-of-the-art environment for algebraic computations in physics. The Physics package in Maple 16 includes 17 new commands that extend its functionality in vector and tensor analysis, general relativity, and quantum fields. In addition, a vast number of changes were introduced to support the goal of making the computational experience as natural as possible, resembling the paper-and-pencil way of doing computations and providing textbook-quality display of results. This application illustrates some of the new features in the Physics package.132209Tue, 27 Mar 2012 04:00:00 ZMaplesoftMaplesoftMath Apps in Maple
http://www.maplesoft.com/applications/view.aspx?SID=132220&ref=Feed
Math Apps in Maple have give students and teachers the ability to explore and illustrate a wide variety of mathematical and scientific concepts. These fun and easy to use educational demonstrations are designed to illustrate various mathematical and physical concepts. This application contains a sampling of some of the many Math Apps available in Maple: drawing the graph of a quadratic, epicycloids, monte carlo approximations of pi, and throwing coconuts.<img src="/view.aspx?si=132220/mathapps_thumb.png" alt="Math Apps in Maple" align="left"/>Math Apps in Maple have give students and teachers the ability to explore and illustrate a wide variety of mathematical and scientific concepts. These fun and easy to use educational demonstrations are designed to illustrate various mathematical and physical concepts. This application contains a sampling of some of the many Math Apps available in Maple: drawing the graph of a quadratic, epicycloids, monte carlo approximations of pi, and throwing coconuts.132220Tue, 27 Mar 2012 04:00:00 ZMaplesoftMaplesoftSpherical Pendulum with Animation
http://www.maplesoft.com/applications/view.aspx?SID=132143&ref=Feed
<p>Some years ago I have written a Maple document ( already on Maple's online) on the subject of animating a simple pendulum for large angles of oscillation. This gave me the chance to test Maple command JacobiSN(time, k). I was very much pleased to see Maple do a wonderful job in getting these Jacobi's elliptic functions without a glitch.<br />Today I am back to these same functions for a similar purpose though much more sophisticated than the previous one.<br />The idea is:<br />1- to get the differential equations of motion for the Spherical Pendulum (SP),<br />2- to solve them,<br />3- to use Maple for finding the inverse of these Elliptic Integrals i.e. finding the displacement z as function of time,<br />4- to get a set of coordinates [x, y, z] for the positions of the bob at different times for plotting,<br />5- finally to work out the necessary steps for the purpose of animation.<br />It turns out that even with only 3 oscillations where each is defined with only 20 positions of the bob for a total of 60 points on the graph, the animation is so overwhelming that Maple reports:<br /> " the length of the output exceeds 1 million".<br />Not withstanding this warning, Maple did a perfect job by getting the animation to my satisfaction. <br />Note that with only 60 positions of the bob, the present article length is equal to 11.3 MB! To be able to upload it, I have to save it without running the last command related to the animation. Doing so I reduced it to a mere 570 KB.<br /><br />It was tiring to get through a jumble of formulas, calculations and programming so I wonder why I have to go through all this trouble to get this animation and yet one can get the same thing with much better animation from the internet. I think the reason is the challenge to be able to do things that others have done before and secondly the idea of creating something form nothing then to see it working as expected, gives (at least to me) a great deal of pleasure and satisfaction.<br />This is beside the fact that, to my knowledge, no such animation for (SP) has been published on Maple online with detailed calculations & programming as I did.<br /><br /></p><img src="/view.aspx?si=132143/433082\Spherical_Pendulum_p.jpg" alt="Spherical Pendulum with Animation" align="left"/><p>Some years ago I have written a Maple document ( already on Maple's online) on the subject of animating a simple pendulum for large angles of oscillation. This gave me the chance to test Maple command JacobiSN(time, k). I was very much pleased to see Maple do a wonderful job in getting these Jacobi's elliptic functions without a glitch.<br />Today I am back to these same functions for a similar purpose though much more sophisticated than the previous one.<br />The idea is:<br />1- to get the differential equations of motion for the Spherical Pendulum (SP),<br />2- to solve them,<br />3- to use Maple for finding the inverse of these Elliptic Integrals i.e. finding the displacement z as function of time,<br />4- to get a set of coordinates [x, y, z] for the positions of the bob at different times for plotting,<br />5- finally to work out the necessary steps for the purpose of animation.<br />It turns out that even with only 3 oscillations where each is defined with only 20 positions of the bob for a total of 60 points on the graph, the animation is so overwhelming that Maple reports:<br /> " the length of the output exceeds 1 million".<br />Not withstanding this warning, Maple did a perfect job by getting the animation to my satisfaction. <br />Note that with only 60 positions of the bob, the present article length is equal to 11.3 MB! To be able to upload it, I have to save it without running the last command related to the animation. Doing so I reduced it to a mere 570 KB.<br /><br />It was tiring to get through a jumble of formulas, calculations and programming so I wonder why I have to go through all this trouble to get this animation and yet one can get the same thing with much better animation from the internet. I think the reason is the challenge to be able to do things that others have done before and secondly the idea of creating something form nothing then to see it working as expected, gives (at least to me) a great deal of pleasure and satisfaction.<br />This is beside the fact that, to my knowledge, no such animation for (SP) has been published on Maple online with detailed calculations & programming as I did.<br /><br /></p>132143Mon, 26 Mar 2012 04:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyNumerical Solution of a Mechanics Braintwister Problem
http://www.maplesoft.com/applications/view.aspx?SID=131117&ref=Feed
<p>In 1995, Boris Korsunsky published a collection of what he called "braintwisters" physics problems. In 2011, Norman Paris and Michael L. Broide presented a comprehensive analysis of one of the mechanics problems involving the coupled motion of two blocks. This worksheet demonstrates how to use Maple to derive the equations of motion using the calculus of variations, and to solve the differential equations numerically. </p><img src="/view.aspx?si=131117/131117_thumb.jpg" alt="Numerical Solution of a Mechanics Braintwister Problem" align="left"/><p>In 1995, Boris Korsunsky published a collection of what he called "braintwisters" physics problems. In 2011, Norman Paris and Michael L. Broide presented a comprehensive analysis of one of the mechanics problems involving the coupled motion of two blocks. This worksheet demonstrates how to use Maple to derive the equations of motion using the calculus of variations, and to solve the differential equations numerically. </p>131117Thu, 23 Feb 2012 05:00:00 ZDr. Frank WangDr. Frank WangCoriolis Effect
http://www.maplesoft.com/applications/view.aspx?SID=1437&ref=Feed
The Coriolis effect is a force that modifies the trajectory of falling object on Earth. It is due to the rotation of the referential and, thereby, it is not a real force. The mathematical expression of this effect is obtained from the crossproduct of Earth's angular velocity (omega) with the object's linear velocity (v). The exact equation is F = 2m(v x omega). This worksheet demonstrates the action of the Coriolis effect on a projectile launched from our planet. It includes a graphic of the projectile's path as well as a procedure that determines how far the projectile will travel.<img src="/view.aspx?si=1437/coriolis_sm.jpg" alt="Coriolis Effect" align="left"/>The Coriolis effect is a force that modifies the trajectory of falling object on Earth. It is due to the rotation of the referential and, thereby, it is not a real force. The mathematical expression of this effect is obtained from the crossproduct of Earth's angular velocity (omega) with the object's linear velocity (v). The exact equation is F = 2m(v x omega). This worksheet demonstrates the action of the Coriolis effect on a projectile launched from our planet. It includes a graphic of the projectile's path as well as a procedure that determines how far the projectile will travel.1437Fri, 09 Dec 2011 05:00:00 ZPascal Thériault LauzierPascal Thériault Lauzier