Physics: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=183
en-us2016 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemFri, 24 Jun 2016 23:51:00 GMTFri, 24 Jun 2016 23:51:00 GMTNew applications in the Physics categoryhttp://www.mapleprimes.com/images/mapleapps.gifPhysics: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=183
Vectors in the plane.
http://www.maplesoft.com/applications/view.aspx?SID=154071&ref=Feed
If an object is subjected to several forces having different magnitudes and act in different directions, how can determine the magnitude and direction of the resultant total force on the object? Forces are vectors and should be added according to the definition of the vector sum. Engineering dealing with many quantities that have both magnitude and direction and can be expressed and analyzed as vectors.
<BR><BR>
In Spanish.<img src="/view.aspx?si=154071/vp.png" alt="Vectors in the plane." align="left"/>If an object is subjected to several forces having different magnitudes and act in different directions, how can determine the magnitude and direction of the resultant total force on the object? Forces are vectors and should be added according to the definition of the vector sum. Engineering dealing with many quantities that have both magnitude and direction and can be expressed and analyzed as vectors.
<BR><BR>
In Spanish.154071Fri, 01 Apr 2016 04:00:00 ZProf. Lenin Araujo CastilloProf. Lenin Araujo CastilloBall Bouncing on Hilly Terrain
http://www.maplesoft.com/applications/view.aspx?SID=154003&ref=Feed
The following application demonstrates how event modeling in the dsolve command can be used to model a ball bouncing on a hilly terrain.<img src="/view.aspx?si=154003/hilly_terrain.png" alt="Ball Bouncing on Hilly Terrain" align="left"/>The following application demonstrates how event modeling in the dsolve command can be used to model a ball bouncing on a hilly terrain.154003Wed, 02 Mar 2016 05:00:00 ZSamir KhanSamir KhanLattice: A package to model accelerator lattices and beam lines
http://www.maplesoft.com/applications/view.aspx?SID=153970&ref=Feed
The Lattice package is a Maple package to design and analyze charged-particle beam lines and circular machines. It employs a beam-line description using the standard elements (dipoles, quadrupoles and so on) and retains the algebraic power of Maple. Beam-line elements are described using the equations governing the particle motion in algebraic form. In this way it is possible to compute expressions for beam-line parameters like Twiss functions, dispersion and such, for beam
lines or rings, and to perform analysis on these expressions using the full power of Maple.<img src="/view.aspx?si=153970/Lattice.png" alt="Lattice: A package to model accelerator lattices and beam lines" align="left"/>The Lattice package is a Maple package to design and analyze charged-particle beam lines and circular machines. It employs a beam-line description using the standard elements (dipoles, quadrupoles and so on) and retains the algebraic power of Maple. Beam-line elements are described using the equations governing the particle motion in algebraic form. In this way it is possible to compute expressions for beam-line parameters like Twiss functions, dispersion and such, for beam
lines or rings, and to perform analysis on these expressions using the full power of Maple.153970Tue, 01 Mar 2016 05:00:00 ZUli WienandsUli WienandsGlobal Temperature Anomaly
http://www.maplesoft.com/applications/view.aspx?SID=153951&ref=Feed
The temperature anomaly or temperature index is defined as the change from a reference temperature or a long-term mean value. A positive ( negative) anomaly indicates that a measured temperuture is warmer (cooler) than the reference value. In this worksheet anomalies have been based upon the period between 1951 to 1980. We consider especially temperature change from 1980 to 2015.<img src="/view.aspx?si=153951/GlobalTemperature.png" alt="Global Temperature Anomaly" align="left"/>The temperature anomaly or temperature index is defined as the change from a reference temperature or a long-term mean value. A positive ( negative) anomaly indicates that a measured temperuture is warmer (cooler) than the reference value. In this worksheet anomalies have been based upon the period between 1951 to 1980. We consider especially temperature change from 1980 to 2015.153951Tue, 19 Jan 2016 05:00:00 ZProf. Josef BettenProf. Josef BettenFitting Wave Height Data to a Probability Distribution
http://www.maplesoft.com/applications/view.aspx?SID=153864&ref=Feed
<p>The University of Maine records real-time accelerometer data from buoys deployed in the Gulf of Maine and Caribbean (http://gyre.umeoce.maine.edu/buoyhome.php). The data can be downloaded from their website, and includes the significant wave height recorded at regular intervals for the last few months.</p>
<p>This application:</p>
<ul>
<li>downloads accelerometer data for Buoy PR206 (located just off the coast of Puerto Rico at a latitude of 18° 28.46' N and a longitude of 66° 5.94' W),</li>
</ul>
<ul>
<li>fits the significant wave height to a Weibull distribution via two methods: maximum likelihood estimation and moment matching,</li>
</ul>
<ul>
<li>and plots the fitted distributions on top of a histogram of the experimental data</li>
</ul>
<p>The location of buoy PR206 is given in a Google Maps component.</p><img src="/view.aspx?si=153864/distribution.jpg" alt="Fitting Wave Height Data to a Probability Distribution" align="left"/><p>The University of Maine records real-time accelerometer data from buoys deployed in the Gulf of Maine and Caribbean (http://gyre.umeoce.maine.edu/buoyhome.php). The data can be downloaded from their website, and includes the significant wave height recorded at regular intervals for the last few months.</p>
<p>This application:</p>
<ul>
<li>downloads accelerometer data for Buoy PR206 (located just off the coast of Puerto Rico at a latitude of 18° 28.46' N and a longitude of 66° 5.94' W),</li>
</ul>
<ul>
<li>fits the significant wave height to a Weibull distribution via two methods: maximum likelihood estimation and moment matching,</li>
</ul>
<ul>
<li>and plots the fitted distributions on top of a histogram of the experimental data</li>
</ul>
<p>The location of buoy PR206 is given in a Google Maps component.</p>153864Wed, 09 Sep 2015 04:00:00 ZSamir KhanSamir KhanTime Series Analysis: Forecasting Average Global Temperatures
http://www.maplesoft.com/applications/view.aspx?SID=153791&ref=Feed
Maple includes powerful tools for accessing, analyzing, and visualizing time series data. This application works with global temperature data to demonstrate techniques for analyzing time series data sets using the TimeSeriesAnalysis package, including visualizing trends and modeling future global temperatures.<img src="/view.aspx?si=153791/thumb.jpg" alt="Time Series Analysis: Forecasting Average Global Temperatures" align="left"/>Maple includes powerful tools for accessing, analyzing, and visualizing time series data. This application works with global temperature data to demonstrate techniques for analyzing time series data sets using the TimeSeriesAnalysis package, including visualizing trends and modeling future global temperatures.153791Tue, 21 Apr 2015 04:00:00 ZDaniel SkoogDaniel SkoogThe Comet 67P/Churyumov-Gerasimenko, Rosetta & Philae
http://www.maplesoft.com/applications/view.aspx?SID=153706&ref=Feed
<p> Abstract<br /><br />The Rosetta space probe launched 10 years ago by the European Space Agency (ESA) arrived recently (November 12, 2014) at the site of the comet known as 67P/Churyumov-Gerasimenco after a trip of 4 billions miles from Earth. After circling the comet, Rosetta released its precious load : the lander Philae packed with 21 different scientific instruments for the study of the comet with the main purpose : the origin of our solar system and possibly the origin of life on our planet.<br /><br />Our plan is rather a modest one since all we want is to get , by calculations, specific data concerning the comet and its lander.<br />We shall take a simplified model and consider the comet as a perfect solid sphere to which we can apply Newton's laws.<br /><br />We want to find:<br /><br />I- the acceleration on the comet surface ,<br />II- its radius,<br />III- its density,<br />IV- the velocity of Philae just after the 1st bounce off the comet (it has bounced twice),<br />V- the time for Philae to reach altitude of 1000 m above the comet .<br /><br />We shall compare our findings with the already known data to see how close our simplified mathematical model findings are to the duck-shaped comet already known results.<br />It turned out that our calculations for a sphere shaped comet are very close to the already known data.<br /><br />Conclusion<br /><br />Even with a shape that defies the application of any mechanical laws we can always get very close to reality by adopting a simplified mathematical model in any preliminary study of a complicated problem.<br /><br /></p><img src="/applications/images/app_image_blank_lg.jpg" alt="The Comet 67P/Churyumov-Gerasimenko, Rosetta & Philae" align="left"/><p> Abstract<br /><br />The Rosetta space probe launched 10 years ago by the European Space Agency (ESA) arrived recently (November 12, 2014) at the site of the comet known as 67P/Churyumov-Gerasimenco after a trip of 4 billions miles from Earth. After circling the comet, Rosetta released its precious load : the lander Philae packed with 21 different scientific instruments for the study of the comet with the main purpose : the origin of our solar system and possibly the origin of life on our planet.<br /><br />Our plan is rather a modest one since all we want is to get , by calculations, specific data concerning the comet and its lander.<br />We shall take a simplified model and consider the comet as a perfect solid sphere to which we can apply Newton's laws.<br /><br />We want to find:<br /><br />I- the acceleration on the comet surface ,<br />II- its radius,<br />III- its density,<br />IV- the velocity of Philae just after the 1st bounce off the comet (it has bounced twice),<br />V- the time for Philae to reach altitude of 1000 m above the comet .<br /><br />We shall compare our findings with the already known data to see how close our simplified mathematical model findings are to the duck-shaped comet already known results.<br />It turned out that our calculations for a sphere shaped comet are very close to the already known data.<br /><br />Conclusion<br /><br />Even with a shape that defies the application of any mechanical laws we can always get very close to reality by adopting a simplified mathematical model in any preliminary study of a complicated problem.<br /><br /></p>153706Mon, 17 Nov 2014 05:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyPhoton Exposure
http://www.maplesoft.com/applications/view.aspx?SID=153684&ref=Feed
<p>This application uses a blackbody model of the sun to calculate the number of photons reaching a cameras sensor. It demonstrates the "Sunny 16" model of exposure.</p><img src="/view.aspx?si=153684/e771d3d2526673d4a8bc8221b6d228ee.gif" alt="Photon Exposure" align="left"/><p>This application uses a blackbody model of the sun to calculate the number of photons reaching a cameras sensor. It demonstrates the "Sunny 16" model of exposure.</p>153684Mon, 29 Sep 2014 04:00:00 ZJohn DoleseJohn DoleseDescartes & Mme La Marquise du Chatelet And The Elastic Collision of Two Bodies
http://www.maplesoft.com/applications/view.aspx?SID=153515&ref=Feed
<p><strong><em> ABSTRACT<br /> <br /> The Marquise</em></strong> <strong><em>du Chatelet in her book " Les Institutions Physiques" published in 1740, stated on page 36, that Descartes, when formulating his laws of motion in an elastic collision of two bodies B & C (B being more massive than C) <span >having the same speed v</span>, said that t<span >he smaller one C will reverse its course </span>while <span >the more massive body B will continue its course in the same direction as before</span> and <span >both will have again the same speed v.<br /> <br /> </span>Mme du Chatelet, basing her judgment on theoretical considerations using <span >the principle of continuity</span> , declared that Descartes was <span >wrong</span> in his statement. For Mme du Chatelet the larger mass B should reverse its course and move in the opposite direction. She mentioned nothing about both bodies B & C as <span >having the same velocity after collision as Descartes did</span>.<br /> <br /> At the time of Descartes, some 300 years ago, the concept of kinetic energy & momentum as we know today was not yet well defined, let alone considered in any physical problem.<br /> <br /> Actually both Descartes & Mme du Chatelet may have been right in some special cases but not in general as the discussion that follows will show.</em></strong></p><img src="/view.aspx?si=153515/Elastic_Collision_image1.jpg" alt="Descartes & Mme La Marquise du Chatelet And The Elastic Collision of Two Bodies" align="left"/><p><strong><em> ABSTRACT<br /> <br /> The Marquise</em></strong> <strong><em>du Chatelet in her book " Les Institutions Physiques" published in 1740, stated on page 36, that Descartes, when formulating his laws of motion in an elastic collision of two bodies B & C (B being more massive than C) <span >having the same speed v</span>, said that t<span >he smaller one C will reverse its course </span>while <span >the more massive body B will continue its course in the same direction as before</span> and <span >both will have again the same speed v.<br /> <br /> </span>Mme du Chatelet, basing her judgment on theoretical considerations using <span >the principle of continuity</span> , declared that Descartes was <span >wrong</span> in his statement. For Mme du Chatelet the larger mass B should reverse its course and move in the opposite direction. She mentioned nothing about both bodies B & C as <span >having the same velocity after collision as Descartes did</span>.<br /> <br /> At the time of Descartes, some 300 years ago, the concept of kinetic energy & momentum as we know today was not yet well defined, let alone considered in any physical problem.<br /> <br /> Actually both Descartes & Mme du Chatelet may have been right in some special cases but not in general as the discussion that follows will show.</em></strong></p>153515Fri, 07 Mar 2014 05:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyMeasuring Water Flow of Rivers
http://www.maplesoft.com/applications/view.aspx?SID=153480&ref=Feed
In this guest article in the Tips & Techniques series, Dr. Michael Monagan discusses the art and science of measuring the amount of water flowing in a river, and relates his personal experiences with this task to its morph into a project for his calculus classes.<img src="/view.aspx?si=153480/thumb.jpg" alt="Measuring Water Flow of Rivers" align="left"/>In this guest article in the Tips & Techniques series, Dr. Michael Monagan discusses the art and science of measuring the amount of water flowing in a river, and relates his personal experiences with this task to its morph into a project for his calculus classes.153480Fri, 13 Dec 2013 05:00:00 ZProf. Michael MonaganProf. Michael MonaganSymmetry of two-dimensional hybrid metal-dielectric photonic crystal within MAPLE
http://www.maplesoft.com/applications/view.aspx?SID=151383&ref=Feed
<p>Hybrid structures were made by assembling monolayers (MLs) of closely packed colloidal microspheres on a metal-coated glass substrate . In fact, this architecture is one of several realizations of hybrid plasmonic-photonic crystals (PHs), which differ in photonic crystals dimensionality and metal ﬁlm corrugation [1,2].</p>
<p>The main challenge to us were exploring of those properties of structures which are caused by their space symmetry. In particular, it was necessary to establish the so-called "rules of selection", i.e. the list of the allowed transitions between electronic states of different symmetry and energy that can be induced by light of varying polarization. Additional interest for us was to demonstrate the possibilities of MAPLE within this specific field.</p><img src="/view.aspx?si=151383/440fb9a2994e797b26c18564d860131b.gif" alt="Symmetry of two-dimensional hybrid metal-dielectric photonic crystal within MAPLE" align="left"/><p>Hybrid structures were made by assembling monolayers (MLs) of closely packed colloidal microspheres on a metal-coated glass substrate . In fact, this architecture is one of several realizations of hybrid plasmonic-photonic crystals (PHs), which differ in photonic crystals dimensionality and metal ﬁlm corrugation [1,2].</p>
<p>The main challenge to us were exploring of those properties of structures which are caused by their space symmetry. In particular, it was necessary to establish the so-called "rules of selection", i.e. the list of the allowed transitions between electronic states of different symmetry and energy that can be induced by light of varying polarization. Additional interest for us was to demonstrate the possibilities of MAPLE within this specific field.</p>151383Thu, 05 Sep 2013 04:00:00 ZOlga V. DvornikOlga V. DvornikHohmann Elliptic Transfer Orbit with Animation
http://www.maplesoft.com/applications/view.aspx?SID=151351&ref=Feed
<p>Abstract<br /><br />The main purpose of this article is to show how to use Hohmann elliptic transfer in two situations:<br />a- When one manned spaceship is trying to catch up with an other one <br />on the same circular orbit around Earth.<br />b- When delivering a payload from Earth to a space station on a circular <br />orbit around Earth using 2-stage rocket .<br /><br />The way we set up the problem is as follows:<br />Consider two manned spaceships with astronauts Sally & Igor , the latter<br />lagging behind Sally by a given angle = 4.5 degrees while both are on the same<br />circular orbit C2 about Earth. A 2d lower circular orbit C1 is given. <br />Find the Hohmann elliptic orbit that is tangent to both orbits which allows<br />Sally to maneuver on C1 then to get back to the circular orbit C2 alongside Igor.<br /><br />Though the math was correct , however the final result we found was not !! <br />It was somehow tricky to find the culprit!<br />We have to restate the problem to get the correct answer. <br />The animation was then set up using the correct data. <br />The animation is a good teaching help for two reasons:<br />1- it gives a 'hand on' experience for anyone who wants to fully understand it,<br />2- it is a good lesson in Maple programming with many loops of the type 'if..then'.<br /><br />Warning<br /><br />This particular animation is a hog for the CPU memory since data accumulated <br />for plotting reached 20 MB! This is the size of this article when animation is <br />executed. For this reason and to be able to upload it I left the animation <br />procedure non executed which drops the size of the article to 300KB.<br /><br />Conclusion<br /><br />If I can get someone interested in the subject of this article in such away that he or <br />she would seek further information for learning from other sources, my efforts<br />would be well rewarded.</p><img src="/view.aspx?si=151351/Elliptic_image1.jpg" alt="Hohmann Elliptic Transfer Orbit with Animation" align="left"/><p>Abstract<br /><br />The main purpose of this article is to show how to use Hohmann elliptic transfer in two situations:<br />a- When one manned spaceship is trying to catch up with an other one <br />on the same circular orbit around Earth.<br />b- When delivering a payload from Earth to a space station on a circular <br />orbit around Earth using 2-stage rocket .<br /><br />The way we set up the problem is as follows:<br />Consider two manned spaceships with astronauts Sally & Igor , the latter<br />lagging behind Sally by a given angle = 4.5 degrees while both are on the same<br />circular orbit C2 about Earth. A 2d lower circular orbit C1 is given. <br />Find the Hohmann elliptic orbit that is tangent to both orbits which allows<br />Sally to maneuver on C1 then to get back to the circular orbit C2 alongside Igor.<br /><br />Though the math was correct , however the final result we found was not !! <br />It was somehow tricky to find the culprit!<br />We have to restate the problem to get the correct answer. <br />The animation was then set up using the correct data. <br />The animation is a good teaching help for two reasons:<br />1- it gives a 'hand on' experience for anyone who wants to fully understand it,<br />2- it is a good lesson in Maple programming with many loops of the type 'if..then'.<br /><br />Warning<br /><br />This particular animation is a hog for the CPU memory since data accumulated <br />for plotting reached 20 MB! This is the size of this article when animation is <br />executed. For this reason and to be able to upload it I left the animation <br />procedure non executed which drops the size of the article to 300KB.<br /><br />Conclusion<br /><br />If I can get someone interested in the subject of this article in such away that he or <br />she would seek further information for learning from other sources, my efforts<br />would be well rewarded.</p>151351Wed, 04 Sep 2013 04:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyClassroom Tips and Techniques: Gems 31-35 from the Red Book of Maple Magic
http://www.maplesoft.com/applications/view.aspx?SID=147092&ref=Feed
Five additional "gems" from the Red Book of Maple Magic are detailed. Gem 31 shows how the updated Explore command can be applied to the numeric solution of an initial-value problem containing parameters. Gem 32 shows some list manipulations. Gem 33 clarifies some issues with the contourplot command, while Gem 34 clarifies some issues with the sample option in the plot command. Finally, Gem 36 examines the Equate command, and its alternatives.<img src="/view.aspx?si=147092/thumb.jpg" alt="Classroom Tips and Techniques: Gems 31-35 from the Red Book of Maple Magic" align="left"/>Five additional "gems" from the Red Book of Maple Magic are detailed. Gem 31 shows how the updated Explore command can be applied to the numeric solution of an initial-value problem containing parameters. Gem 32 shows some list manipulations. Gem 33 clarifies some issues with the contourplot command, while Gem 34 clarifies some issues with the sample option in the plot command. Finally, Gem 36 examines the Equate command, and its alternatives.147092Fri, 10 May 2013 04:00:00 ZDr. Robert LopezDr. Robert LopezDerivation of Schwarzschild Metric Using Newman-Penrose Formalism
http://www.maplesoft.com/applications/view.aspx?SID=146772&ref=Feed
<p>This document is an attempt to use the DifferentialGeometry tool to derive a standard metric. The Schwarzschild metric is the simpilist, so will provide a straightforward example of the DifferentialGeometry commands. Instead of plugging the general metric directly into Einstein's equations, we use the Newman-Penrose formalism.<br /><br /></p><img src="/applications/images/app_image_blank_lg.jpg" alt="Derivation of Schwarzschild Metric Using Newman-Penrose Formalism" align="left"/><p>This document is an attempt to use the DifferentialGeometry tool to derive a standard metric. The Schwarzschild metric is the simpilist, so will provide a straightforward example of the DifferentialGeometry commands. Instead of plugging the general metric directly into Einstein's equations, we use the Newman-Penrose formalism.<br /><br /></p>146772Sun, 05 May 2013 04:00:00 ZDr. Michael WatsonDr. Michael WatsonPeriodicity of Sunspots
http://www.maplesoft.com/applications/view.aspx?SID=144592&ref=Feed
<p>This application finds the periodicity of sunspots with two independent approaches</p>
<ul>
<li>a frequency domain transformation of the data, </li>
<li>and autocorrelation. </li>
</ul>
<p>If implemented and interpreted correctly, both approaches should give the same sunspot period. The application uses routines from Maple 17’s new <a href="/products/maple/new_features/signal_processing.aspx">Signal Processing package</a>, and uses historical sunspot data from the National Geophysical Data Center. Additionally, an embedded video component demonstrates how you can zoom into a plot.</p><img src="/view.aspx?si=144592/sunspots.jpg" alt="Periodicity of Sunspots" align="left"/><p>This application finds the periodicity of sunspots with two independent approaches</p>
<ul>
<li>a frequency domain transformation of the data, </li>
<li>and autocorrelation. </li>
</ul>
<p>If implemented and interpreted correctly, both approaches should give the same sunspot period. The application uses routines from Maple 17’s new <a href="/products/maple/new_features/signal_processing.aspx">Signal Processing package</a>, and uses historical sunspot data from the National Geophysical Data Center. Additionally, an embedded video component demonstrates how you can zoom into a plot.</p>144592Wed, 13 Mar 2013 04:00:00 ZMaplesoftMaplesoftAlexander Friedmann's Cosmic Scenarios
http://www.maplesoft.com/applications/view.aspx?SID=142459&ref=Feed
<p>The Russian mathematician and physicist Alexander Friedmann (1888-1925) is well known among relativists, but his contributions to cosmology are largely misunderstood. Even the Royal Swedish Academy of Sciences misrepresented Friedmann's work in the 2011 Nobel Prize scientific background essay. Friedmann was the first physicist who demonstrated that Albert Einstein's general relativity admits non-static solutions, and the universe can expand, oscillate, and be born in a singularity. Friedmann's conclusion was based on his analysis of an elliptic integral; this worksheet employs Maple's utility of handling elliptic integrals to present Friedmann's results graphically. Friedmann's differential equation governing the evolution of the universe based on Einstein's general theory of relativity is also derived using Maple's tensor package. </p><img src="/view.aspx?si=142459/friedmannscenario.jpg" alt="Alexander Friedmann's Cosmic Scenarios" align="left"/><p>The Russian mathematician and physicist Alexander Friedmann (1888-1925) is well known among relativists, but his contributions to cosmology are largely misunderstood. Even the Royal Swedish Academy of Sciences misrepresented Friedmann's work in the 2011 Nobel Prize scientific background essay. Friedmann was the first physicist who demonstrated that Albert Einstein's general relativity admits non-static solutions, and the universe can expand, oscillate, and be born in a singularity. Friedmann's conclusion was based on his analysis of an elliptic integral; this worksheet employs Maple's utility of handling elliptic integrals to present Friedmann's results graphically. Friedmann's differential equation governing the evolution of the universe based on Einstein's general theory of relativity is also derived using Maple's tensor package. </p>142459Sun, 20 Jan 2013 05:00:00 ZDr. Frank WangDr. Frank WangSimulation of a five qubits convolutional code
http://www.maplesoft.com/applications/view.aspx?SID=142318&ref=Feed
We describe in this work a five-qubit quantum convolutional error correcting code and its implementation on a classical computer. The encoding and decoding circuits and an error correction procedure are presented. We will verify that if any X, Y, Z error or any product of them occurs on one or two qubit, this correction always allows to recover the useful information or to obtain a list of possible errors. The originality in this correction is the winning time obtained by measuring only the required syndromes, thus avoiding the decoherence phenomenon. Also, we give the average fidelity for double errors recovered as single errors having same syndrome.<img src="/applications/images/app_image_blank_lg.jpg" alt="Simulation of a five qubits convolutional code" align="left"/>We describe in this work a five-qubit quantum convolutional error correcting code and its implementation on a classical computer. The encoding and decoding circuits and an error correction procedure are presented. We will verify that if any X, Y, Z error or any product of them occurs on one or two qubit, this correction always allows to recover the useful information or to obtain a list of possible errors. The originality in this correction is the winning time obtained by measuring only the required syndromes, thus avoiding the decoherence phenomenon. Also, we give the average fidelity for double errors recovered as single errors having same syndrome.142318Wed, 16 Jan 2013 05:00:00 ZFatiha MerazkaFatiha MerazkaGeneration and Interaction of Solitons
http://www.maplesoft.com/applications/view.aspx?SID=141102&ref=Feed
<p>Classic computer experiments demonstrating the generation of solitons first time, has been published by N. J. Zabusky and M. D. Kruskal in 1965. Considered that was an earlier idea of Enrico Fermi. In 2006, Frank Wang has created a demonstration on the same subject with Maple tools . We would like to show both the origin and the interaction of Korteweg de Vries solitons as a development of approach of above cited publications.</p><img src="/view.aspx?si=141102/fig.jpg" alt="Generation and Interaction of Solitons" align="left"/><p>Classic computer experiments demonstrating the generation of solitons first time, has been published by N. J. Zabusky and M. D. Kruskal in 1965. Considered that was an earlier idea of Enrico Fermi. In 2006, Frank Wang has created a demonstration on the same subject with Maple tools . We would like to show both the origin and the interaction of Korteweg de Vries solitons as a development of approach of above cited publications.</p>141102Tue, 04 Dec 2012 05:00:00 ZS.I. ShyanS.I. ShyanClassroom Tips and Techniques: Slider-Control of Parameters in Numeric Solutions of ODEs
http://www.maplesoft.com/applications/view.aspx?SID=135062&ref=Feed
In the article "Sliders for Parameter-Dependent Curves", and again in the article "Caustics for a Plane Curve", the use of sliders to control parameters was explored. This month's article explores the use of sliders to control parameters in a differential equation that must be solved numerically.<img src="/view.aspx?si=135062/thumb.jpg" alt="Classroom Tips and Techniques: Slider-Control of Parameters in Numeric Solutions of ODEs" align="left"/>In the article "Sliders for Parameter-Dependent Curves", and again in the article "Caustics for a Plane Curve", the use of sliders to control parameters was explored. This month's article explores the use of sliders to control parameters in a differential equation that must be solved numerically.135062Tue, 12 Jun 2012 04:00:00 ZDr. Robert LopezDr. Robert LopezClassroom Tips and Techniques: Fourier Series and an Orthogonal Expansions Package
http://www.maplesoft.com/applications/view.aspx?SID=134198&ref=Feed
The OrthogonalExpansions package contributed to the Maple Application Center by Dr. Sergey Moiseev is considered as a tool for generating a Fourier series and its partial sums. This package provides commands for expansions in 17 other bases of orthogonal functions. In addition to looking at the Fourier series option, this article also considers the Bessel series expansion.<img src="/view.aspx?si=134198/thumb.jpg" alt="Classroom Tips and Techniques: Fourier Series and an Orthogonal Expansions Package" align="left"/>The OrthogonalExpansions package contributed to the Maple Application Center by Dr. Sergey Moiseev is considered as a tool for generating a Fourier series and its partial sums. This package provides commands for expansions in 17 other bases of orthogonal functions. In addition to looking at the Fourier series option, this article also considers the Bessel series expansion.134198Mon, 14 May 2012 04:00:00 ZDr. Robert LopezDr. Robert Lopez