Differential Equations: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=136
en-us2015 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemThu, 08 Oct 2015 23:42:29 GMTThu, 08 Oct 2015 23:42:29 GMTNew applications in the Differential Equations categoryhttp://www.mapleprimes.com/images/mapleapps.gifDifferential Equations: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=136
The Classic SIR Model
http://www.maplesoft.com/applications/view.aspx?SID=153877&ref=Feed
<P>This interactive application explores the classical SIR model for the spread of disease, which assumes that a population can be divided into three distinct compartments - S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=4837052487041024">View and interact with this app in the MapleCloud!</A></P><img src="/view.aspx?si=153877/sir_classic.png" alt="The Classic SIR Model" align="left"/><P>This interactive application explores the classical SIR model for the spread of disease, which assumes that a population can be divided into three distinct compartments - S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=4837052487041024">View and interact with this app in the MapleCloud!</A></P>153877Wed, 16 Sep 2015 04:00:00 ZGünter EdenharterGünter EdenharterThe SIR model with births and deaths
http://www.maplesoft.com/applications/view.aspx?SID=153878&ref=Feed
<P>This interactive application explores a variation of the classic SIR model for the spread of disease. The classical SIR model assumes that a population can be divided into three distinct compartments: S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease. One extension to the classic SIR model is to add births and deaths to the model. Thus there is an inflow of new susceptibles and an outflow from all three compartments.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6584880737550336">View and interact with this app in the MapleCloud!</A></P><img src="/view.aspx?si=153878/sir_births_deaths.png" alt="The SIR model with births and deaths" align="left"/><P>This interactive application explores a variation of the classic SIR model for the spread of disease. The classical SIR model assumes that a population can be divided into three distinct compartments: S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease. One extension to the classic SIR model is to add births and deaths to the model. Thus there is an inflow of new susceptibles and an outflow from all three compartments.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6584880737550336">View and interact with this app in the MapleCloud!</A></P>153878Wed, 16 Sep 2015 04:00:00 ZGünter EdenharterGünter EdenharterThe SEIR model with births and deaths
http://www.maplesoft.com/applications/view.aspx?SID=153879&ref=Feed
<P>This interactive application explores the SEIR model for the spread of disease. The SEIR model is an extension of the classical SIR (Susceptibles, Infected, Recovered) model, where a fourth compartment is added that contains exposed persons which are infected but are not yet infectious. The SEIR (Susceptibles, Exposed, Infectious, Recovered) model as presented here covers also births and deaths.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6407056173039616">View and interact with this app in the MapleCloud!</A></P><img src="/view.aspx?si=153879/seir.png" alt="The SEIR model with births and deaths" align="left"/><P>This interactive application explores the SEIR model for the spread of disease. The SEIR model is an extension of the classical SIR (Susceptibles, Infected, Recovered) model, where a fourth compartment is added that contains exposed persons which are infected but are not yet infectious. The SEIR (Susceptibles, Exposed, Infectious, Recovered) model as presented here covers also births and deaths.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6407056173039616">View and interact with this app in the MapleCloud!</A></P>153879Wed, 16 Sep 2015 04:00:00 ZGünter EdenharterGünter EdenharterThe Comet 67P/Churyumov-Gerasimenko, Rosetta & Philae
http://www.maplesoft.com/applications/view.aspx?SID=153706&ref=Feed
<p> Abstract<br /><br />The Rosetta space probe launched 10 years ago by the European Space Agency (ESA) arrived recently (November 12, 2014) at the site of the comet known as 67P/Churyumov-Gerasimenco after a trip of 4 billions miles from Earth. After circling the comet, Rosetta released its precious load : the lander Philae packed with 21 different scientific instruments for the study of the comet with the main purpose : the origin of our solar system and possibly the origin of life on our planet.<br /><br />Our plan is rather a modest one since all we want is to get , by calculations, specific data concerning the comet and its lander.<br />We shall take a simplified model and consider the comet as a perfect solid sphere to which we can apply Newton's laws.<br /><br />We want to find:<br /><br />I- the acceleration on the comet surface ,<br />II- its radius,<br />III- its density,<br />IV- the velocity of Philae just after the 1st bounce off the comet (it has bounced twice),<br />V- the time for Philae to reach altitude of 1000 m above the comet .<br /><br />We shall compare our findings with the already known data to see how close our simplified mathematical model findings are to the duck-shaped comet already known results.<br />It turned out that our calculations for a sphere shaped comet are very close to the already known data.<br /><br />Conclusion<br /><br />Even with a shape that defies the application of any mechanical laws we can always get very close to reality by adopting a simplified mathematical model in any preliminary study of a complicated problem.<br /><br /></p><img src="/applications/images/app_image_blank_lg.jpg" alt="The Comet 67P/Churyumov-Gerasimenko, Rosetta & Philae" align="left"/><p> Abstract<br /><br />The Rosetta space probe launched 10 years ago by the European Space Agency (ESA) arrived recently (November 12, 2014) at the site of the comet known as 67P/Churyumov-Gerasimenco after a trip of 4 billions miles from Earth. After circling the comet, Rosetta released its precious load : the lander Philae packed with 21 different scientific instruments for the study of the comet with the main purpose : the origin of our solar system and possibly the origin of life on our planet.<br /><br />Our plan is rather a modest one since all we want is to get , by calculations, specific data concerning the comet and its lander.<br />We shall take a simplified model and consider the comet as a perfect solid sphere to which we can apply Newton's laws.<br /><br />We want to find:<br /><br />I- the acceleration on the comet surface ,<br />II- its radius,<br />III- its density,<br />IV- the velocity of Philae just after the 1st bounce off the comet (it has bounced twice),<br />V- the time for Philae to reach altitude of 1000 m above the comet .<br /><br />We shall compare our findings with the already known data to see how close our simplified mathematical model findings are to the duck-shaped comet already known results.<br />It turned out that our calculations for a sphere shaped comet are very close to the already known data.<br /><br />Conclusion<br /><br />Even with a shape that defies the application of any mechanical laws we can always get very close to reality by adopting a simplified mathematical model in any preliminary study of a complicated problem.<br /><br /></p>153706Mon, 17 Nov 2014 05:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyThe Mortgage Payment Problem: Approximating a Discrete Process with a Differential Equation
http://www.maplesoft.com/applications/view.aspx?SID=153511&ref=Feed
In this guest article in the Tips and Techniques series, Dr. Michael Monagan uses mortgage interest to test how well a differential equation models what is essentially a discrete process.<img src="/view.aspx?si=153511/thumb.jpg" alt="The Mortgage Payment Problem: Approximating a Discrete Process with a Differential Equation" align="left"/>In this guest article in the Tips and Techniques series, Dr. Michael Monagan uses mortgage interest to test how well a differential equation models what is essentially a discrete process.153511Thu, 20 Feb 2014 05:00:00 ZProf. Michael MonaganProf. Michael MonaganThe House Warming Model
http://www.maplesoft.com/applications/view.aspx?SID=153491&ref=Feed
In this guest article in the Tips and Techniques series, Dr. Michael Monagan discusses a model of heat-flow in a house, and shows how he uses this model in his class.<img src="/view.aspx?si=153491/thumb.jpg" alt="The House Warming Model" align="left"/>In this guest article in the Tips and Techniques series, Dr. Michael Monagan discusses a model of heat-flow in a house, and shows how he uses this model in his class.153491Wed, 22 Jan 2014 05:00:00 ZProf. Michael MonaganProf. Michael MonaganClassroom Tips and Techniques: Slider-Control of Parameters in an ODE
http://www.maplesoft.com/applications/view.aspx?SID=152112&ref=Feed
Several ways to provide slider-control of parameters in a differential equation are considered. In particular, the cases of one and two parameters are illustrated, and for the case of two parameters, a 2-dimensional slider is constructed.<img src="/view.aspx?si=152112/thumb.jpg" alt="Classroom Tips and Techniques: Slider-Control of Parameters in an ODE" align="left"/>Several ways to provide slider-control of parameters in a differential equation are considered. In particular, the cases of one and two parameters are illustrated, and for the case of two parameters, a 2-dimensional slider is constructed.152112Mon, 23 Sep 2013 04:00:00 ZDr. Robert LopezDr. Robert LopezClassroom Tips and Techniques: Solving Algebraic Equations by the Dragilev Method
http://www.maplesoft.com/applications/view.aspx?SID=149514&ref=Feed
The Dragilev method for solving certain systems of algebraic equations is used to parametrize the closed curve formed by the intersection of two given surfaces. This work is an elucidation of several posts to MaplePrimes.<img src="/view.aspx?si=149514/thumb.jpg" alt="Classroom Tips and Techniques: Solving Algebraic Equations by the Dragilev Method" align="left"/>The Dragilev method for solving certain systems of algebraic equations is used to parametrize the closed curve formed by the intersection of two given surfaces. This work is an elucidation of several posts to MaplePrimes.149514Tue, 16 Jul 2013 04:00:00 ZDr. Robert LopezDr. Robert LopezClassroom Tips and Techniques: Gems 31-35 from the Red Book of Maple Magic
http://www.maplesoft.com/applications/view.aspx?SID=147092&ref=Feed
Five additional "gems" from the Red Book of Maple Magic are detailed. Gem 31 shows how the updated Explore command can be applied to the numeric solution of an initial-value problem containing parameters. Gem 32 shows some list manipulations. Gem 33 clarifies some issues with the contourplot command, while Gem 34 clarifies some issues with the sample option in the plot command. Finally, Gem 36 examines the Equate command, and its alternatives.<img src="/view.aspx?si=147092/thumb.jpg" alt="Classroom Tips and Techniques: Gems 31-35 from the Red Book of Maple Magic" align="left"/>Five additional "gems" from the Red Book of Maple Magic are detailed. Gem 31 shows how the updated Explore command can be applied to the numeric solution of an initial-value problem containing parameters. Gem 32 shows some list manipulations. Gem 33 clarifies some issues with the contourplot command, while Gem 34 clarifies some issues with the sample option in the plot command. Finally, Gem 36 examines the Equate command, and its alternatives.147092Fri, 10 May 2013 04:00:00 ZDr. Robert LopezDr. Robert LopezDynamics of the Battlefield: The Lanchester Model
http://www.maplesoft.com/applications/view.aspx?SID=146801&ref=Feed
<p>Around the time of World War I, July 28, 1914 to November 11, 1918, many mathematicians and engineers, including Frederick W. Lanchester, became fascinated by the dynamics of the battlefield. Various mathematical models were proposed in an effort to explain--and to predict--how military forces interacted on the battlefield. During World War I these mathematical investigations were mainly academic, although during World War II the United States government actually applied these models to make important decisions about the Battle of Iwo Jima in which the American forces seized control of the Japanese island of Iwo Jima. Outnumbered and outgunned by the Americans, the Japanese were defeated even before the battle began although the American forces suffered many casualties and injuries.</p><img src="/view.aspx?si=146801/army2.JPG" alt="Dynamics of the Battlefield: The Lanchester Model" align="left"/><p>Around the time of World War I, July 28, 1914 to November 11, 1918, many mathematicians and engineers, including Frederick W. Lanchester, became fascinated by the dynamics of the battlefield. Various mathematical models were proposed in an effort to explain--and to predict--how military forces interacted on the battlefield. During World War I these mathematical investigations were mainly academic, although during World War II the United States government actually applied these models to make important decisions about the Battle of Iwo Jima in which the American forces seized control of the Japanese island of Iwo Jima. Outnumbered and outgunned by the Americans, the Japanese were defeated even before the battle began although the American forces suffered many casualties and injuries.</p>146801Mon, 06 May 2013 04:00:00 ZDouglas LewitDouglas LewitCalculation of the Average Duration of an Illness and Computation of the Reproduction Number in the SIR Model
http://www.maplesoft.com/applications/view.aspx?SID=142794&ref=Feed
<p>I prepared this Maple worksheet as part of a presentation to Professor Mubayi's lab group at Northeastern Illinois University. Every member of the research group explores a different aspect of how mathematics is used to study public health. During this presentation, I explore two different SIR models.</p><img src="/applications/images/app_image_blank_lg.jpg" alt="Calculation of the Average Duration of an Illness and Computation of the Reproduction Number in the SIR Model" align="left"/><p>I prepared this Maple worksheet as part of a presentation to Professor Mubayi's lab group at Northeastern Illinois University. Every member of the research group explores a different aspect of how mathematics is used to study public health. During this presentation, I explore two different SIR models.</p>142794Tue, 29 Jan 2013 05:00:00 ZDouglas LewitDouglas LewitAlexander Friedmann's Cosmic Scenarios
http://www.maplesoft.com/applications/view.aspx?SID=142459&ref=Feed
<p>The Russian mathematician and physicist Alexander Friedmann (1888-1925) is well known among relativists, but his contributions to cosmology are largely misunderstood. Even the Royal Swedish Academy of Sciences misrepresented Friedmann's work in the 2011 Nobel Prize scientific background essay. Friedmann was the first physicist who demonstrated that Albert Einstein's general relativity admits non-static solutions, and the universe can expand, oscillate, and be born in a singularity. Friedmann's conclusion was based on his analysis of an elliptic integral; this worksheet employs Maple's utility of handling elliptic integrals to present Friedmann's results graphically. Friedmann's differential equation governing the evolution of the universe based on Einstein's general theory of relativity is also derived using Maple's tensor package. </p><img src="/view.aspx?si=142459/friedmannscenario.jpg" alt="Alexander Friedmann's Cosmic Scenarios" align="left"/><p>The Russian mathematician and physicist Alexander Friedmann (1888-1925) is well known among relativists, but his contributions to cosmology are largely misunderstood. Even the Royal Swedish Academy of Sciences misrepresented Friedmann's work in the 2011 Nobel Prize scientific background essay. Friedmann was the first physicist who demonstrated that Albert Einstein's general relativity admits non-static solutions, and the universe can expand, oscillate, and be born in a singularity. Friedmann's conclusion was based on his analysis of an elliptic integral; this worksheet employs Maple's utility of handling elliptic integrals to present Friedmann's results graphically. Friedmann's differential equation governing the evolution of the universe based on Einstein's general theory of relativity is also derived using Maple's tensor package. </p>142459Sun, 20 Jan 2013 05:00:00 ZDr. Frank WangDr. Frank WangGreen's functions
http://www.maplesoft.com/applications/view.aspx?SID=136531&ref=Feed
<p>This is a derivation and specific construction and application of Green's functions as an "Inverse" to differential operators.</p><img src="/applications/images/app_image_blank_lg.jpg" alt="Green's functions" align="left"/><p>This is a derivation and specific construction and application of Green's functions as an "Inverse" to differential operators.</p>136531Wed, 15 Aug 2012 04:00:00 ZDr. Jack WagnerDr. Jack WagnerClassroom Tips and Techniques: Slider-Control of Parameters in Numeric Solutions of ODEs
http://www.maplesoft.com/applications/view.aspx?SID=135062&ref=Feed
In the article "Sliders for Parameter-Dependent Curves", and again in the article "Caustics for a Plane Curve", the use of sliders to control parameters was explored. This month's article explores the use of sliders to control parameters in a differential equation that must be solved numerically.<img src="/view.aspx?si=135062/thumb.jpg" alt="Classroom Tips and Techniques: Slider-Control of Parameters in Numeric Solutions of ODEs" align="left"/>In the article "Sliders for Parameter-Dependent Curves", and again in the article "Caustics for a Plane Curve", the use of sliders to control parameters was explored. This month's article explores the use of sliders to control parameters in a differential equation that must be solved numerically.135062Tue, 12 Jun 2012 04:00:00 ZDr. Robert LopezDr. Robert LopezClassroom Tips and Techniques: Fourier Series and an Orthogonal Expansions Package
http://www.maplesoft.com/applications/view.aspx?SID=134198&ref=Feed
The OrthogonalExpansions package contributed to the Maple Application Center by Dr. Sergey Moiseev is considered as a tool for generating a Fourier series and its partial sums. This package provides commands for expansions in 17 other bases of orthogonal functions. In addition to looking at the Fourier series option, this article also considers the Bessel series expansion.<img src="/view.aspx?si=134198/thumb.jpg" alt="Classroom Tips and Techniques: Fourier Series and an Orthogonal Expansions Package" align="left"/>The OrthogonalExpansions package contributed to the Maple Application Center by Dr. Sergey Moiseev is considered as a tool for generating a Fourier series and its partial sums. This package provides commands for expansions in 17 other bases of orthogonal functions. In addition to looking at the Fourier series option, this article also considers the Bessel series expansion.134198Mon, 14 May 2012 04:00:00 ZDr. Robert LopezDr. Robert LopezDifferential Equations in Maple 16
http://www.maplesoft.com/applications/view.aspx?SID=132225&ref=Feed
Maple 16 continues to push the frontiers in differential equation solving and extends its lead in computing closed-form solutions to differential equations, adding in even more classes of problems that can be handled. The numeric ODE, DAE, and PDE solvers also continue to evolve. Maple 16 shows significant performance improvements for these solvers, as well as enhanced event handling. This application illustrates many of these improvements.<img src="/view.aspx?si=132225/thumb2.jpg" alt="Differential Equations in Maple 16" align="left"/>Maple 16 continues to push the frontiers in differential equation solving and extends its lead in computing closed-form solutions to differential equations, adding in even more classes of problems that can be handled. The numeric ODE, DAE, and PDE solvers also continue to evolve. Maple 16 shows significant performance improvements for these solvers, as well as enhanced event handling. This application illustrates many of these improvements.132225Tue, 27 Mar 2012 04:00:00 ZMaplesoftMaplesoftSpherical Pendulum with Animation
http://www.maplesoft.com/applications/view.aspx?SID=132143&ref=Feed
<p>Some years ago I have written a Maple document ( already on Maple's online) on the subject of animating a simple pendulum for large angles of oscillation. This gave me the chance to test Maple command JacobiSN(time, k). I was very much pleased to see Maple do a wonderful job in getting these Jacobi's elliptic functions without a glitch.<br />Today I am back to these same functions for a similar purpose though much more sophisticated than the previous one.<br />The idea is:<br />1- to get the differential equations of motion for the Spherical Pendulum (SP),<br />2- to solve them,<br />3- to use Maple for finding the inverse of these Elliptic Integrals i.e. finding the displacement z as function of time,<br />4- to get a set of coordinates [x, y, z] for the positions of the bob at different times for plotting,<br />5- finally to work out the necessary steps for the purpose of animation.<br />It turns out that even with only 3 oscillations where each is defined with only 20 positions of the bob for a total of 60 points on the graph, the animation is so overwhelming that Maple reports:<br /> " the length of the output exceeds 1 million".<br />Not withstanding this warning, Maple did a perfect job by getting the animation to my satisfaction. <br />Note that with only 60 positions of the bob, the present article length is equal to 11.3 MB! To be able to upload it, I have to save it without running the last command related to the animation. Doing so I reduced it to a mere 570 KB.<br /><br />It was tiring to get through a jumble of formulas, calculations and programming so I wonder why I have to go through all this trouble to get this animation and yet one can get the same thing with much better animation from the internet. I think the reason is the challenge to be able to do things that others have done before and secondly the idea of creating something form nothing then to see it working as expected, gives (at least to me) a great deal of pleasure and satisfaction.<br />This is beside the fact that, to my knowledge, no such animation for (SP) has been published on Maple online with detailed calculations & programming as I did.<br /><br /></p><img src="/view.aspx?si=132143/433082\Spherical_Pendulum_p.jpg" alt="Spherical Pendulum with Animation" align="left"/><p>Some years ago I have written a Maple document ( already on Maple's online) on the subject of animating a simple pendulum for large angles of oscillation. This gave me the chance to test Maple command JacobiSN(time, k). I was very much pleased to see Maple do a wonderful job in getting these Jacobi's elliptic functions without a glitch.<br />Today I am back to these same functions for a similar purpose though much more sophisticated than the previous one.<br />The idea is:<br />1- to get the differential equations of motion for the Spherical Pendulum (SP),<br />2- to solve them,<br />3- to use Maple for finding the inverse of these Elliptic Integrals i.e. finding the displacement z as function of time,<br />4- to get a set of coordinates [x, y, z] for the positions of the bob at different times for plotting,<br />5- finally to work out the necessary steps for the purpose of animation.<br />It turns out that even with only 3 oscillations where each is defined with only 20 positions of the bob for a total of 60 points on the graph, the animation is so overwhelming that Maple reports:<br /> " the length of the output exceeds 1 million".<br />Not withstanding this warning, Maple did a perfect job by getting the animation to my satisfaction. <br />Note that with only 60 positions of the bob, the present article length is equal to 11.3 MB! To be able to upload it, I have to save it without running the last command related to the animation. Doing so I reduced it to a mere 570 KB.<br /><br />It was tiring to get through a jumble of formulas, calculations and programming so I wonder why I have to go through all this trouble to get this animation and yet one can get the same thing with much better animation from the internet. I think the reason is the challenge to be able to do things that others have done before and secondly the idea of creating something form nothing then to see it working as expected, gives (at least to me) a great deal of pleasure and satisfaction.<br />This is beside the fact that, to my knowledge, no such animation for (SP) has been published on Maple online with detailed calculations & programming as I did.<br /><br /></p>132143Mon, 26 Mar 2012 04:00:00 ZDr. Ahmed BaroudyDr. Ahmed BaroudyParameterizing Motion along a Curve
http://www.maplesoft.com/applications/view.aspx?SID=130465&ref=Feed
<p>We use the Euler-Lagrange equation to parameterize the motion of a bead on a parabola, a helix, and a piecewise defined combination of the two.</p><img src="/applications/images/app_image_blank_lg.jpg" alt="Parameterizing Motion along a Curve" align="left"/><p>We use the Euler-Lagrange equation to parameterize the motion of a bead on a parabola, a helix, and a piecewise defined combination of the two.</p>130465Wed, 08 Feb 2012 05:00:00 ZShawn HedmanShawn HedmanClassroom Tips and Techniques: An Undamped Coupled Oscillator
http://www.maplesoft.com/applications/view.aspx?SID=129521&ref=Feed
<p>Even for just three degrees of freedom, an undamped coupled oscillator modeled by the ODE system <em>M</em> ü + <em>K</em> u = 0 is difficult to solve analytically because, ultimately, a cubic characteristic equation has to be solve exactly. Instead, we simultaneously diagonalize <em>M</em> and <em>K</em>, the mass and stiffness matrices, thereby uncoupling the equations, and obtaining an explicit solution.</p><img src="/view.aspx?si=129521/thumb.jpg" alt="Classroom Tips and Techniques: An Undamped Coupled Oscillator" align="left"/><p>Even for just three degrees of freedom, an undamped coupled oscillator modeled by the ODE system <em>M</em> ü + <em>K</em> u = 0 is difficult to solve analytically because, ultimately, a cubic characteristic equation has to be solve exactly. Instead, we simultaneously diagonalize <em>M</em> and <em>K</em>, the mass and stiffness matrices, thereby uncoupling the equations, and obtaining an explicit solution.</p>129521Tue, 10 Jan 2012 05:00:00 ZDr. Robert LopezDr. Robert LopezCoriolis Effect
http://www.maplesoft.com/applications/view.aspx?SID=1437&ref=Feed
The Coriolis effect is a force that modifies the trajectory of falling object on Earth. It is due to the rotation of the referential and, thereby, it is not a real force. The mathematical expression of this effect is obtained from the crossproduct of Earth's angular velocity (omega) with the object's linear velocity (v). The exact equation is F = 2m(v x omega). This worksheet demonstrates the action of the Coriolis effect on a projectile launched from our planet. It includes a graphic of the projectile's path as well as a procedure that determines how far the projectile will travel.<img src="/view.aspx?si=1437/coriolis_sm.jpg" alt="Coriolis Effect" align="left"/>The Coriolis effect is a force that modifies the trajectory of falling object on Earth. It is due to the rotation of the referential and, thereby, it is not a real force. The mathematical expression of this effect is obtained from the crossproduct of Earth's angular velocity (omega) with the object's linear velocity (v). The exact equation is F = 2m(v x omega). This worksheet demonstrates the action of the Coriolis effect on a projectile launched from our planet. It includes a graphic of the projectile's path as well as a procedure that determines how far the projectile will travel.1437Fri, 09 Dec 2011 05:00:00 ZPascal Thériault LauzierPascal Thériault Lauzier