Maple Document: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=1337
en-us2015 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemFri, 27 Nov 2015 11:52:47 GMTFri, 27 Nov 2015 11:52:47 GMTNew applications in the Maple Document categoryhttp://www.mapleprimes.com/images/mapleapps.gifMaple Document: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=1337
Byte Frequency Analyzer
http://www.maplesoft.com/applications/view.aspx?SID=153920&ref=Feed
In the cryptographic research an important operation is to determine the byte-frequency of non-encrypted and encrypted files. This action allows us to appraise the quality of the cryptographic algorithms. This application implements a `byte-frequency analyzer` in Maple. Results are displayed in column graphs, using both linear and logarithmic scales on the y-axis. The logarithmic y-axis is very useful if the differences between the byte values are large. The displayed column graphs can be exported in six formats (Bitmap, PNG, GIF, JPEG, Encapsulated Postcript, PDF and Windows Metafile) for use in documents concerning cryptography and file processing tools.<img src="/view.aspx?si=153920/bytefreq.png" alt="Byte Frequency Analyzer" align="left"/>In the cryptographic research an important operation is to determine the byte-frequency of non-encrypted and encrypted files. This action allows us to appraise the quality of the cryptographic algorithms. This application implements a `byte-frequency analyzer` in Maple. Results are displayed in column graphs, using both linear and logarithmic scales on the y-axis. The logarithmic y-axis is very useful if the differences between the byte values are large. The displayed column graphs can be exported in six formats (Bitmap, PNG, GIF, JPEG, Encapsulated Postcript, PDF and Windows Metafile) for use in documents concerning cryptography and file processing tools.153920Thu, 12 Nov 2015 05:00:00 ZCzeslaw KoscielnyCzeslaw KoscielnyMetacyclic Groups by Maple
http://www.maplesoft.com/applications/view.aspx?SID=153918&ref=Feed
A class of metacyclic groups is considered for Maple computations. Tables of groups, inverse elements and orders are found out. Centers and conjugate classes of these groups are computed also. The method used is based on construction of a complex copy of the metacyclic group to make Maple computations easier.
The advantage of this treatment of metacyclic groups is that mathematical form of the subject is maintained to a great degree.<img src="/applications/images/app_image_blank_lg.jpg" alt="Metacyclic Groups by Maple" align="left"/>A class of metacyclic groups is considered for Maple computations. Tables of groups, inverse elements and orders are found out. Centers and conjugate classes of these groups are computed also. The method used is based on construction of a complex copy of the metacyclic group to make Maple computations easier.
The advantage of this treatment of metacyclic groups is that mathematical form of the subject is maintained to a great degree.153918Tue, 10 Nov 2015 05:00:00 ZKahtan H. AlzubaidyKahtan H. AlzubaidyGain of an Ideal and Non-Ideal Amplifier
http://www.maplesoft.com/applications/view.aspx?SID=153907&ref=Feed
This application models the ideal and non-ideal behavior of an amplifier.<img src="/view.aspx?si=153907/amplifiergain.png" alt="Gain of an Ideal and Non-Ideal Amplifier" align="left"/>This application models the ideal and non-ideal behavior of an amplifier.153907Fri, 30 Oct 2015 04:00:00 ZSamir KhanSamir KhanPV Diode Parameter Estimation
http://www.maplesoft.com/applications/view.aspx?SID=153908&ref=Feed
This application fits experimental I-V data to an equation that describes a photovoltaic diode.<img src="/view.aspx?si=153908/pvdiode.png" alt="PV Diode Parameter Estimation" align="left"/>This application fits experimental I-V data to an equation that describes a photovoltaic diode.153908Fri, 30 Oct 2015 04:00:00 ZSamir KhanSamir KhanSending Emails from the Maple Command Line
http://www.maplesoft.com/applications/view.aspx?SID=153912&ref=Feed
You can send emails from the Maple command line via Mailgun (http://mailgun.com) a free email delivery service with an web-based API. The code in this application communicates with this API to send an email; you'll need to replace certain parts with details from your own Mailgun account.<img src="/applications/images/app_image_blank_lg.jpg" alt="Sending Emails from the Maple Command Line" align="left"/>You can send emails from the Maple command line via Mailgun (http://mailgun.com) a free email delivery service with an web-based API. The code in this application communicates with this API to send an email; you'll need to replace certain parts with details from your own Mailgun account.153912Fri, 30 Oct 2015 04:00:00 ZSamir KhanSamir KhanThe SHA-3 Family of Cryptographic Hash Functions and Extendable-Output Functions
http://www.maplesoft.com/applications/view.aspx?SID=153903&ref=Feed
The National Institute of Standards and Technology (NIST) has released the final version of its "Secure Hash Algorithm-3" (SHA-3) standard in August 2015. The new standard ("Federal Information Processing Standard (FIPS) 202") specifies four cryptographic hash functions, called SHA3-224, SHA3-256, SHA3-384 and SHA3-512, as well as two Extendable-Output Functions (XOFs), called SHAKE128 and SHAKE256. These functions are based on the Keccak sponge function, designed by G. Bertoni, J. Daemen, M. Peeters and G. Van Assche. The hash functions are an essential tool for securing the integrity of electronic information and the XOFs offer the added flexibility of having a variable output length. This application contains an implementation of these functions and also of the SHA-3-based Message Authentication Code HMAC.<img src="/view.aspx?si=153903/keccak.jpg" alt="The SHA-3 Family of Cryptographic Hash Functions and Extendable-Output Functions" align="left"/>The National Institute of Standards and Technology (NIST) has released the final version of its "Secure Hash Algorithm-3" (SHA-3) standard in August 2015. The new standard ("Federal Information Processing Standard (FIPS) 202") specifies four cryptographic hash functions, called SHA3-224, SHA3-256, SHA3-384 and SHA3-512, as well as two Extendable-Output Functions (XOFs), called SHAKE128 and SHAKE256. These functions are based on the Keccak sponge function, designed by G. Bertoni, J. Daemen, M. Peeters and G. Van Assche. The hash functions are an essential tool for securing the integrity of electronic information and the XOFs offer the added flexibility of having a variable output length. This application contains an implementation of these functions and also of the SHA-3-based Message Authentication Code HMAC.153903Fri, 16 Oct 2015 04:00:00 ZJosé Luis Gómez PardoJosé Luis Gómez PardoMultiplicative Cyclic Groups by Maple
http://www.maplesoft.com/applications/view.aspx?SID=153897&ref=Feed
<P>In this article we introduce cyclic groups in multiplicative notations by using Maple 13. Group table,order table,and inverse table are given.</P>
<P>
All generators and all subgroups of a multiplicative cyclic group are given also. Hasse diagrams of subgroup lattices are shown. All homomorphisms and automorphisms of such groups are computed as well as the kernel and image of a homomorphism.</P><img src="/applications/images/app_image_blank_lg.jpg" alt="Multiplicative Cyclic Groups by Maple" align="left"/><P>In this article we introduce cyclic groups in multiplicative notations by using Maple 13. Group table,order table,and inverse table are given.</P>
<P>
All generators and all subgroups of a multiplicative cyclic group are given also. Hasse diagrams of subgroup lattices are shown. All homomorphisms and automorphisms of such groups are computed as well as the kernel and image of a homomorphism.</P>153897Thu, 15 Oct 2015 04:00:00 ZKahtan H. AlzubaidyKahtan H. AlzubaidyNonlinear Regression with Maple
http://www.maplesoft.com/applications/view.aspx?SID=153895&ref=Feed
Many Authors have discussed Nonlinear Regression based upon the LEVENBERG-MARQUART algorithm. Often the SIGMAPLOT Program is very useful, too.
In this worksheet the Maple routine NonlinearFit [Statistics] has been preferred, to fit nonlinear model functions to given data. This routine is very effective and simple to use. Examples in this document include the envelopes of FRENEL's integrals and the hardening of an aluminium alloy.<img src="/applications/images/app_image_blank_lg.jpg" alt="Nonlinear Regression with Maple" align="left"/>Many Authors have discussed Nonlinear Regression based upon the LEVENBERG-MARQUART algorithm. Often the SIGMAPLOT Program is very useful, too.
In this worksheet the Maple routine NonlinearFit [Statistics] has been preferred, to fit nonlinear model functions to given data. This routine is very effective and simple to use. Examples in this document include the envelopes of FRENEL's integrals and the hardening of an aluminium alloy.153895Wed, 14 Oct 2015 04:00:00 ZProf. Josef BettenProf. Josef BettenEscapeTime Fractals
http://www.maplesoft.com/applications/view.aspx?SID=153882&ref=Feed
<P>
The <A HREF="/support/help/Maple/view.aspx?path=Fractals/EscapeTime">Fractals</A> package in Maple makes it easier to create and explore popular fractals, including the Mandelbrot, Julia, Newton, and other time-iterative fractals. The Fractals package can quickly apply various escape time iterative maps over rectangular regions in the complex plane, the results of which consist of images that approximate well-known fractal sets. In the following application, you can explore escape time fractals by manipulating parameters pertaining to the generation of Mandelbrot, Julia, Newton and Burning Ship fractals.</P>
<P>
<B>Also:</B> You can <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=5690839489576960">interact with this application</A> in the MapleCloud!</P><img src="/view.aspx?si=153882/escapetimefractal.png" alt="EscapeTime Fractals" align="left"/><P>
The <A HREF="/support/help/Maple/view.aspx?path=Fractals/EscapeTime">Fractals</A> package in Maple makes it easier to create and explore popular fractals, including the Mandelbrot, Julia, Newton, and other time-iterative fractals. The Fractals package can quickly apply various escape time iterative maps over rectangular regions in the complex plane, the results of which consist of images that approximate well-known fractal sets. In the following application, you can explore escape time fractals by manipulating parameters pertaining to the generation of Mandelbrot, Julia, Newton and Burning Ship fractals.</P>
<P>
<B>Also:</B> You can <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=5690839489576960">interact with this application</A> in the MapleCloud!</P>153882Fri, 25 Sep 2015 04:00:00 ZMaplesoftMaplesoftThe SIR model with births and deaths
http://www.maplesoft.com/applications/view.aspx?SID=153878&ref=Feed
<P>This interactive application explores a variation of the classic SIR model for the spread of disease. The classical SIR model assumes that a population can be divided into three distinct compartments: S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease. One extension to the classic SIR model is to add births and deaths to the model. Thus there is an inflow of new susceptibles and an outflow from all three compartments.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6584880737550336">View and interact with this app in the MapleCloud!</A></P><img src="/view.aspx?si=153878/sir_births_deaths.png" alt="The SIR model with births and deaths" align="left"/><P>This interactive application explores a variation of the classic SIR model for the spread of disease. The classical SIR model assumes that a population can be divided into three distinct compartments: S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease. One extension to the classic SIR model is to add births and deaths to the model. Thus there is an inflow of new susceptibles and an outflow from all three compartments.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6584880737550336">View and interact with this app in the MapleCloud!</A></P>153878Wed, 16 Sep 2015 04:00:00 ZGünter EdenharterGünter EdenharterThe SEIR model with births and deaths
http://www.maplesoft.com/applications/view.aspx?SID=153879&ref=Feed
<P>This interactive application explores the SEIR model for the spread of disease. The SEIR model is an extension of the classical SIR (Susceptibles, Infected, Recovered) model, where a fourth compartment is added that contains exposed persons which are infected but are not yet infectious. The SEIR (Susceptibles, Exposed, Infectious, Recovered) model as presented here covers also births and deaths.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6407056173039616">View and interact with this app in the MapleCloud!</A></P><img src="/view.aspx?si=153879/seir.png" alt="The SEIR model with births and deaths" align="left"/><P>This interactive application explores the SEIR model for the spread of disease. The SEIR model is an extension of the classical SIR (Susceptibles, Infected, Recovered) model, where a fourth compartment is added that contains exposed persons which are infected but are not yet infectious. The SEIR (Susceptibles, Exposed, Infectious, Recovered) model as presented here covers also births and deaths.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=6407056173039616">View and interact with this app in the MapleCloud!</A></P>153879Wed, 16 Sep 2015 04:00:00 ZGünter EdenharterGünter EdenharterThe Classic SIR Model
http://www.maplesoft.com/applications/view.aspx?SID=153877&ref=Feed
<P>This interactive application explores the classical SIR model for the spread of disease, which assumes that a population can be divided into three distinct compartments - S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=4837052487041024">View and interact with this app in the MapleCloud!</A></P><img src="/view.aspx?si=153877/sir_classic.png" alt="The Classic SIR Model" align="left"/><P>This interactive application explores the classical SIR model for the spread of disease, which assumes that a population can be divided into three distinct compartments - S is the proportion of susceptibles, I is the proportion of infected persons and R is the proportion of persons that have recovered from infection and are now immune against the disease.</P>
<P>
<B>Also:</B> <A HREF="http://maplecloud.maplesoft.com/application.jsp?appId=4837052487041024">View and interact with this app in the MapleCloud!</A></P>153877Wed, 16 Sep 2015 04:00:00 ZGünter EdenharterGünter EdenharterQuotient Polynomial Rings by Maple
http://www.maplesoft.com/applications/view.aspx?SID=153872&ref=Feed
Quotient polynomial rings over the infinite field containing ℚ are involved. The computations concern the univariate polynomial rings and the multivariate polynomial rings in two variables. In both cases a vector space basis for the quotient is constructed. The case of of several variables includes cases of infinite dimensions.We shall restrict ourselves to the finite computations. Ring operations of addition and multiplication on the quotients are computed as well.
Goebner basis is used and the computations are carried out in Maple 13.<img src="/view.aspx?si=153872/0038a244bd8b097c72d4ef733ddf7f8c.gif" alt="Quotient Polynomial Rings by Maple" align="left"/>Quotient polynomial rings over the infinite field containing ℚ are involved. The computations concern the univariate polynomial rings and the multivariate polynomial rings in two variables. In both cases a vector space basis for the quotient is constructed. The case of of several variables includes cases of infinite dimensions.We shall restrict ourselves to the finite computations. Ring operations of addition and multiplication on the quotients are computed as well.
Goebner basis is used and the computations are carried out in Maple 13.153872Sat, 12 Sep 2015 04:00:00 ZKahtan H. AlzubaidyKahtan H. AlzubaidyMaple Implementation of the Secure Transport Encryption Scheme
http://www.maplesoft.com/applications/view.aspx?SID=153863&ref=Feed
An easy-to-use interactive Maple implementation of transport encryption scheme has been presented. It allows to encrypt any file with arbitrary extension stored in the used computer system and in portable memory devices. The encrypted file may contain all 7-bit characters. Therefore, the encrypted file can be securely transmitted over the internet as an e-mail enclosure. The application encrypts also the name of the plaintext file: this way, the kind of content of the plaintext file is hidden. The encrypted file is saved in the same folder as the plaintext file. On encryption/decryption in the GUI Text Area the user will see an exhaustive information about the performed task. On decryption, the encrypted file is removed. The presented applications sm128b.mw must have permission to save and remove the processed files. It is worth to know that the secret key in the application is embedded. Thus, any user can embed his own secret key in the application in many ways.<img src="/view.aspx?si=153863/transport.png" alt="Maple Implementation of the Secure Transport Encryption Scheme" align="left"/>An easy-to-use interactive Maple implementation of transport encryption scheme has been presented. It allows to encrypt any file with arbitrary extension stored in the used computer system and in portable memory devices. The encrypted file may contain all 7-bit characters. Therefore, the encrypted file can be securely transmitted over the internet as an e-mail enclosure. The application encrypts also the name of the plaintext file: this way, the kind of content of the plaintext file is hidden. The encrypted file is saved in the same folder as the plaintext file. On encryption/decryption in the GUI Text Area the user will see an exhaustive information about the performed task. On decryption, the encrypted file is removed. The presented applications sm128b.mw must have permission to save and remove the processed files. It is worth to know that the secret key in the application is embedded. Thus, any user can embed his own secret key in the application in many ways.153863Wed, 09 Sep 2015 04:00:00 ZCzeslaw KoscielnyCzeslaw KoscielnyFitting Wave Height Data to a Probability Distribution
http://www.maplesoft.com/applications/view.aspx?SID=153864&ref=Feed
<p>The University of Maine records real-time accelerometer data from buoys deployed in the Gulf of Maine and Caribbean (http://gyre.umeoce.maine.edu/buoyhome.php). The data can be downloaded from their website, and includes the significant wave height recorded at regular intervals for the last few months.</p>
<p>This application:</p>
<ul>
<li>downloads accelerometer data for Buoy PR206 (located just off the coast of Puerto Rico at a latitude of 18° 28.46' N and a longitude of 66° 5.94' W),</li>
</ul>
<ul>
<li>fits the significant wave height to a Weibull distribution via two methods: maximum likelihood estimation and moment matching,</li>
</ul>
<ul>
<li>and plots the fitted distributions on top of a histogram of the experimental data</li>
</ul>
<p>The location of buoy PR206 is given in a Google Maps component.</p><img src="/view.aspx?si=153864/distribution.jpg" alt="Fitting Wave Height Data to a Probability Distribution" align="left"/><p>The University of Maine records real-time accelerometer data from buoys deployed in the Gulf of Maine and Caribbean (http://gyre.umeoce.maine.edu/buoyhome.php). The data can be downloaded from their website, and includes the significant wave height recorded at regular intervals for the last few months.</p>
<p>This application:</p>
<ul>
<li>downloads accelerometer data for Buoy PR206 (located just off the coast of Puerto Rico at a latitude of 18° 28.46' N and a longitude of 66° 5.94' W),</li>
</ul>
<ul>
<li>fits the significant wave height to a Weibull distribution via two methods: maximum likelihood estimation and moment matching,</li>
</ul>
<ul>
<li>and plots the fitted distributions on top of a histogram of the experimental data</li>
</ul>
<p>The location of buoy PR206 is given in a Google Maps component.</p>153864Wed, 09 Sep 2015 04:00:00 ZSamir KhanSamir KhanUnit Root Parameter Estimation
http://www.maplesoft.com/applications/view.aspx?SID=153861&ref=Feed
We will in this application use daily and monthly data from the SP-500 Index to calculate the unit root coefficients which will then be used for forecasting purposes<img src="/applications/images/app_image_blank_lg.jpg" alt="Unit Root Parameter Estimation" align="left"/>We will in this application use daily and monthly data from the SP-500 Index to calculate the unit root coefficients which will then be used for forecasting purposes153861Wed, 02 Sep 2015 04:00:00 ZMarcus DavidssonMarcus DavidssonTips and Techniques: Working with Finitely Presented Groups in Maple
http://www.maplesoft.com/applications/view.aspx?SID=153852&ref=Feed
This Tips and Techniques article introduces Maple's facilities for working with finitely presented groups. A finitely presented group is a group defined by means of a finite number of generators, and a finite number of defining relations. It is one of the principal ways in which a group may be represented on the computer, and is virtually the only representation that effectively allows us to compute with many infinite groups.<img src="/view.aspx?si=153852/thumb.jpg" alt="Tips and Techniques: Working with Finitely Presented Groups in Maple" align="left"/>This Tips and Techniques article introduces Maple's facilities for working with finitely presented groups. A finitely presented group is a group defined by means of a finite number of generators, and a finite number of defining relations. It is one of the principal ways in which a group may be represented on the computer, and is virtually the only representation that effectively allows us to compute with many infinite groups.153852Tue, 25 Aug 2015 04:00:00 ZMaplesoftMaplesoftOptimal Income tax from a Simple Socialist Model
http://www.maplesoft.com/applications/view.aspx?SID=153853&ref=Feed
We will in this application discuss optimal taxation from a simple socialist model. We will also run some regressions on data from the 2015 Index of Economic Freedom<img src="/view.aspx?si=153853/Che_Guevara.jpg" alt="Optimal Income tax from a Simple Socialist Model" align="left"/>We will in this application discuss optimal taxation from a simple socialist model. We will also run some regressions on data from the 2015 Index of Economic Freedom153853Tue, 25 Aug 2015 04:00:00 ZMarcus DavidssonMarcus DavidssonTopology Package-1
http://www.maplesoft.com/applications/view.aspx?SID=153849&ref=Feed
<p ><strong>Topology Tools<br />
Department of Mathematics, Faculty of Science, University of Benghazi, Libya<br /></strong>
Taha Guma el turki<br /><br />
e-mail: taha1978_2002@yahoo.com<br /><br />
The procedures in this application are related to point set topology , and they compute many new issues as the following :-<br />1) Checking Normality ,all normal spaces over a given set and their number . <br />2) Minimal Basic open set , minimal basis.<br /> 3) Number of weakly-dimensional topologies .<br /> 4) Check if two topologies are homeomorphic or not .<br /> 5) Disconnected spaces and their number. <br /> 6) Disjoint proper open sets , disjoint proper closed sets , proper sets . <br />7) Neither open nor closed sets <br />8) The user can compute the special points in more flexible method than the method in[1].
<br /><strong>Note:-<br /></strong><br />For the following procedures the user have to enter ”n” the number of set points :-<br /> 1) All Extremal Topologies(n) ; # n the number of points.<br /><br /> 2) Numberof Extremal Topologies(n);<br /><br /> 3) AllNonTrivialMinimalTopologies(n); <br /><br /> 4) NumberofNonTrivialMinimalTopologies(n);<br /><br /> <strong>References:-</strong><br /><br /> [1] http://www.maplesoft.com/applications/view.aspx?SID=145571<br /><br /> [2] http://www.maplesoft.com/applications/view.aspx?SID=153617 <br /> <br />[3] http://www.maplesoft.com/applications/view.aspx?SID=150631<br /><br /> [4] http://www.maplesoft.com/applications/view.aspx?SID=4122.</p><img src="/applications/images/app_image_blank_lg.jpg" alt="Topology Package-1" align="left"/><p ><strong>Topology Tools<br />
Department of Mathematics, Faculty of Science, University of Benghazi, Libya<br /></strong>
Taha Guma el turki<br /><br />
e-mail: taha1978_2002@yahoo.com<br /><br />
The procedures in this application are related to point set topology , and they compute many new issues as the following :-<br />1) Checking Normality ,all normal spaces over a given set and their number . <br />2) Minimal Basic open set , minimal basis.<br /> 3) Number of weakly-dimensional topologies .<br /> 4) Check if two topologies are homeomorphic or not .<br /> 5) Disconnected spaces and their number. <br /> 6) Disjoint proper open sets , disjoint proper closed sets , proper sets . <br />7) Neither open nor closed sets <br />8) The user can compute the special points in more flexible method than the method in[1].
<br /><strong>Note:-<br /></strong><br />For the following procedures the user have to enter ”n” the number of set points :-<br /> 1) All Extremal Topologies(n) ; # n the number of points.<br /><br /> 2) Numberof Extremal Topologies(n);<br /><br /> 3) AllNonTrivialMinimalTopologies(n); <br /><br /> 4) NumberofNonTrivialMinimalTopologies(n);<br /><br /> <strong>References:-</strong><br /><br /> [1] http://www.maplesoft.com/applications/view.aspx?SID=145571<br /><br /> [2] http://www.maplesoft.com/applications/view.aspx?SID=153617 <br /> <br />[3] http://www.maplesoft.com/applications/view.aspx?SID=150631<br /><br /> [4] http://www.maplesoft.com/applications/view.aspx?SID=4122.</p>153849Sat, 22 Aug 2015 04:00:00 ZTaha Guma el turkiTaha Guma el turkiKnight's Tour
http://www.maplesoft.com/applications/view.aspx?SID=153842&ref=Feed
A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square only once.
This application presents the implementation of this task in Maple.<img src="/view.aspx?si=153842/26f19bd457ac566083dec1b86db8b91b.gif" alt="Knight's Tour" align="left"/>A knight's tour is a sequence of moves of a knight on a chessboard such that the knight visits every square only once.
This application presents the implementation of this task in Maple.153842Thu, 13 Aug 2015 04:00:00 ZDr. Yury ZavarovskyDr. Yury Zavarovsky