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homogeneous boundary conditions and an initial sine function is solved analytically by separation of
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bation. It is shown that an exponential layer builds up close to the downstream boundary. Discussion and
comparison of both solutions are carried out extensively offering the numericist a new test model for the
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1. Introduction

The numerical integration of the Navier–Stokes equations by
standard methods like FXM (Finite X Methods), X being D(iffer-
ence), E(lement), V(olume) or by spectral and spectral elements
requires a careful design. This is especially true and essential when
long time integration ranges are involved as is the case for direct
numerical simulation (DNS) or large-eddy simulations (LES) of tur-
bulent flows where the evaluation of time averaged quantities
imply very long time series to obtain meaningful information
and statistics. Therefore temporal stability and space accuracy
are the basic requirements needed to render the algorithms effi-
cient on large scale parallel machines and to extract relevant phys-
ical phenomena.

The practitioners of computational fluid dynamics have decom-
posed the analysis of the complexity and stiffness of the Navier–
Stokes equations into simpler problems like the Stokes (linear)
equations that embody the difficulties of the space discretization
of the velocity and pressure fields and the advection–diffusion
problem that is related to the transport character of the non-linear
terms. This last class of problems includes the non-linear Burgers
equations and the linear advection–diffusion (LAD) equation. In
this paper, we will address the one-dimensional LAD equation with
homogeneous Dirichlet boundary conditions as this is a meaning-
ful test for established or novel discrete schemes. For high Rey-
nolds number flows the advection is dominating diffusion but
the presence of the boundaries imposing no-slip wall conditions
complicates the solution of the problem. Boundary layers develop
and in most cases influence deeply the flow dynamics. No-slip wall
boundary conditions impede the general use of periodic Fourier
representation and spectral calculation.

Even though the LAD equation is linear it is difficult to find
closed form analytical solution in the literature. Most of the efforts
have been devoted to the solution of LAD with an upstream bound-
ary condition and a Robin or Neumann downstream condition. The
presence of the gradient condition at the exit of the domain eases
the development of the analytical solution. The paper by Pérez
Guérrero et al. [10] uses a change of variable to obtain a heat equa-
tion which is then solved by a generalized integral transform tech-
nique proposed by Cotta [4]. In [13], van Genuchten et al. are able
to use a variable transformation that reduces the partial differen-
tial equation to an ordinary differential equation the solution of
which is expressed by the complementary error function. Other
methodologies are possible to tackle the LAD problem on finite
or infinite domains. Without the pretension of being exhaustive,
we can cite Bosen [3], Kumar et al. [8], Pérez Guérrero et al. [11]
and Zoppou and Knight [14].

On the numerical side, finite differences have been applied, see
for example [5]. In the finite element framework, Gresho et al. [7]
investigate a time integrator based on the combination of the
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trapezoid rule and the second-order Adams–Bashforth scheme
with piecewise linear elements for space discretization. Some ana-
lytical solutions are presented in the various examples solved
throughout the paper. However none of them treats the LAD prob-
lem with homogeneous Dirichlet conditions and a smooth initial
condition like a sine function. In the book of Donea and Huerta
[6] the LAD problem is proposed with a truncated Gaussian profile
as the initial condition.

In this paper we will solve the LAD problem with homogeneous
boundary conditions and a sine profile for the initial condition. This
is exactly the same initial and boundary conditions that were
imposed for the Burgers equation solved by Basdevant et al. [2].
We will be able to compare the physics associated with both prob-
lems. The paper is organized as follows. Section 2 describes the
LAD problem which is solved in closed form by the introduction
of a change of variables. Section 3 details the analytical solution
when the viscosity goes to zero. In this case the problem at hand
is a simple wave equation perturbed by the presence of a very
weak viscous term. Section 4 presents the Fourier solution when
periodic conditions are applied. Section 5 is devoted to some con-
siderations related to energy conservation. Section 6 treats the
numerical method obtained by linear finite elements and a time
integration using a Crank–Nicolson scheme for the viscous term
and a second order Adams–Bashforth scheme for the advection
term. Section 7 reports the results produced by both approaches
and compares them. Finally the last section draws conclusions.

2. Linear advection–diffusion equation

The unsteady linear advection–diffusion equation is given by
the following relation

@u
@t
þ c

@u
@x
¼ m

@2u
@x2 ; �1 < x < 1; t 2 �0; T�; ð1Þ

where u is the velocity variable, c > 0 the constant advection veloc-
ity, m the kinematic viscosity and time t. We will impose homoge-
neous Dirichlet boundary conditions uð�1; tÞ ¼ uð1; tÞ ¼ 0 and the
initial condition uðx;0Þ ¼ � sinpx. These initial and boundary con-
ditions were already used for the Burgers equation in [2]. This
choice will allow us to compare the two cases.

To obtain a closed form solution, let us make the change of
variables

uðx; tÞ ¼ vðx; tÞeaxþbt : ð2Þ

Introducing (2) in (1) and simplifying by the exponential, one
obtains

@v
@t
þ bþ ca� a2m
� �

v þ c � 2amð Þ @v
@x
¼ m

@2v
@x2 : ð3Þ

As a and b are free parameters, we choose them in such a way that

bþ ca� a2m ¼ 0; ð4Þ
c � 2am ¼ 0: ð5Þ

Therefore, a ¼ c=2m and b ¼ �c2=4m. The governing equation for v is
reduced to the standard heat equation

@v
@t
¼ m

@2v
@x2 ; ð6Þ

subject to the homogeneous conditions vð�1; tÞ ¼ vð1; tÞ ¼ 0 and
the initial condition

vðx;0Þ ¼ � sin pxe�ax ¼ � sin pxe�
cx
2m: ð7Þ

Let us use the method of separation of variables to solve (6) by set-
ting vðx; tÞ ¼ XðxÞTðtÞ. Omitting the details of the algebra, this leads
to the solution
vðx; tÞ ¼
X1
k¼0

Ak sin
kpx

2
þ Bk cos

kpx
2

� �
e�mk2p2

4 t : ð8Þ

The boundary conditions impose the conditions
A2pþ1 ¼ B2p ¼ 0; p ¼ 0;1; . . .. Eq. (8) becomes

vðx; tÞ ¼
X1
p¼0

A2p sinðppxÞe�mp2p2t þ B2pþ1 cos
2pþ 1

2
px

� �
e�mð2pþ1Þ2

4 p2t:

ð9Þ

Applying the initial condition (7) to Eq. (9) yields

X1
p¼0

A2p sin ppxþ B2pþ1 cos
2pþ 1

2
px ¼ � sinðpxÞe�cx

2m: ð10Þ

Using the orthogonality property of Fourier polynomials, the coeffi-
cients A2p and B2pþ1 are obtained solving the relations

A2p

Z 1

�1
ðsin ppxÞ2dx ¼ �

Z 1

�1
sinðpxÞ sinðppxÞe�cx

2mdx; ð11Þ

B2pþ1

Z 1

�1
cos

2pþ1
2

px
� �2

dx¼�
Z 1

�1
sinðpxÞcos

2pþ1
2

px
� �

e�
cx
2mdx:

ð12Þ

With the help of standard trigonometric relations, the right hand
side integral of (11) may be rewritten asZ 1

�1
sinpxsinppxe�

cx
2m dx¼1

2

Z 1

�1
cosðp�1Þpx�cosðpþ1Þpx½ �e�cx

2mdx:

ð13Þ

Furthermore one has also the identity (cf. [1])Z
e�ax cos ppx dx ¼ e�ax

a2 þ p2p2 �a cos ppxþ pp sin ppxð Þ: ð14Þ

Therefore one gets

A2p ¼
�32ð�1Þpþ1m3cp2p sinhðc=2mÞ

c4 þ 8ðcpmÞ2ðp2 þ 1Þ þ 16ðpmÞ4ðp2 � 1Þ2
: ð15Þ

A similar development gives

B2pþ1 ¼
�16ð�1Þpþ1m3cp2ð2pþ 1Þ coshðc=2mÞ

c4 þ ðcpmÞ2ð8p2 þ 8pþ 10Þ þ ðpmÞ4ð4p2 þ 4p� 3Þ2
: ð16Þ

With (2) and the relations (9), (15), (16) one writes

uðx; tÞ ¼ 16p2m3ce
c

2mðx�
c
2tÞ

� sinh
c

2m

� �X1
p¼0

ð�1Þp2p sinðppxÞe�mp2p2 t

c4 þ 8ðcpmÞ2ðp2 þ 1Þ þ 16ðpmÞ4ðp2 � 1Þ2

"

þ cosh
c

2m

� �X1
p¼0

ð�1Þpð2pþ 1Þ cos 2pþ1
2 px

� �
e�mð2pþ1Þ2

4 p2 t

c4 þ ðcpmÞ2ð8p2 þ 8pþ 10Þ þ ðpmÞ4ð4p2 þ 4p� 3Þ2

3
5:
ð17Þ

When the viscosity goes to zero, the solution becomes

uðx; tÞ ¼ 8p2 m
c

� �3
e

c
2mððxþ1Þ�c

2tÞ

X1
p¼0

ð�1Þp 2p sinðppxÞ þ ð2pþ 1Þ cos
2pþ 1

2
px

� �� �" #
: ð18Þ

We observe that the presence of the exponential term in (18) ren-
ders the problem stiffer and the closed form solution blows up for
vanishing viscosity. This ill-behavior requires a special treatment.

3. Analytical solution for vanishing viscosity

We will decompose the problem solution in two parts

uðx; tÞ ¼ uaðx; tÞ þ mUðx; tÞ; ð19Þ
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where ua indicates the solution of the advection equation, i.e. when
m ¼ 0, and U a viscous contribution. Obviously the solution for ua is
given as

ua ¼
� sinðpðx� ctÞÞ for ct < xþ 1
0 for ct P xþ 1:

�
ð20Þ

Insertion of (19) in (1) yields

@ua

@t
þ c

@ua

@x
þ m

@U
@t
þ c

@U
@x

� �
¼ m

@2ua

@x2 þ m2 @
2U
@x2 : ð21Þ

The first two terms vanish as they satisfy the wave equation.
Neglecting the second order term in m2, we are left with

@U
@t
þ c

@U
@x
¼ @

2ua

@x2 : ð22Þ

Taking (20) into account, Eq. (22) reads

@U
@t
þ c

@U
@x
¼ dp2 sinðpðx� ctÞÞ with

d ¼ 1 for ct < xþ 1
d ¼ 0 for ct P xþ 1:

�
ð23Þ

For this first-order equation, it is easy to verify that the initial and
boundary conditions for U are

Uðx;0Þ ¼0; �1 < x < 1 ð24Þ
Uð�1; tÞ ¼0; t P 0: ð25Þ

We can also verify that on the right boundary, the solution must
reach the following value

Uð1; tÞ ¼
1
m sinðpctÞ for ct < 2
0 for ct P 2:

(
ð26Þ
3.1. Case d ¼ 0, (ct P xþ 1)

3.1.1. ct P 2
With (23)–(25), we obtain the solution

Uðx; tÞ ¼ 0; �1 < x < 1: ð27Þ
3.1.2. ct < 2
Referring to the same relations, the solution is

Uðx; tÞ ¼ 0; for � 1 6 xþ 1; and Uð1; tÞ ¼ 1
m

sinðpctÞ: ð28Þ
3.2. Case d ¼ 1, (ct < xþ 1)

To solve

@U
@t
þ c

@U
@x
¼ p2 sinðpðx� ctÞÞ; ð29Þ

with (24) and (25), we set

Uðx; tÞ ¼ p2ct sinðpðx� ctÞÞ þ Vðx; tÞ; ð30Þ

where the first term in the right hand side is a particular solution.
This procedure gives the equation

@V
@t
þ c

@V
@x
¼ 0; ð31Þ

with the conditions

Vðx;0Þ ¼ 0; �1 < x < 1 ð32Þ
Vð�1; tÞ ¼ �p2ct sinðpctÞ: ð33Þ

The V solution is

Vðx; tÞ ¼ �p2ðct � x� 1Þ sinðpðx� ctÞÞ for ct < xþ 1: ð34Þ
In this case, the final expression for Uðx; tÞ is

Uðx; tÞ ¼ p2ðxþ 1Þ sinðpðx� ctÞÞ: ð35Þ

Consequently the LAD solution for very small viscosity becomes

uðx; tÞ ¼ �sinðpðx� ctÞÞ 1� mp2ðxþ1Þ
� �

for ct < xþ 1
0 for ct P xþ 1:

(
ð36Þ
4. Fourier solution

Let us assume that instead of Dirichlet conditions, the problem
is subject to periodic conditions. Then the Fourier solution is read-
ily obtained

uðx; tÞ ¼ � sinðpðx� ctÞÞe�mp2t : ð37Þ

If the viscosity goes to zero, the periodic solution becomes

uðx; tÞ ¼ � sinðpðx� ctÞÞð1� mp2t þ Oðm2ÞÞ; ð38Þ

a relation that has some similarities with Eq. (36).

5. The energy equation

Here we look at the conservation law for the kinetic energy of
the problem. Multiplying Eq. (1) through by u and integrating over
the domain, one getsZ 1

�1

@

@t
u2

2

� �
þ c

@

@x
u2

2

� �� �
dx ¼ m

Z 1

�1
u
@2u
@x2

¼ �m
Z 1

�1

@u
@x

� �2

dx; ð39Þ

where integration by parts was used to evaluate the last term. Car-
rying through the integration, the energy equation reduces to

d
dt

Z 1

�1

u2

2
dx ¼ �m

Z 1

�1

@u
@x

� �2

dx: ð40Þ

As is well known the energy decay is governed by the diffusion.
It is also possible to compute the time needed to reach a zero

velocity at each point of the domain. For this purpose, we integrate
(1)Z 1

�1

@u
@t
þ c

@u
@x

� �
dx ¼ m

Z 1

�1

@2u
@x2 dx; ð41Þ

leading to the relation

d
dt

Z 1

�1
udx :¼ dU

dt
¼ m

@u
@x
ð1; tÞ � @u

@x
ð�1; tÞ

	 

; ð42Þ

where U denotes the average velocity. Consequently we obtain

UðtÞ ¼ m
Z t

0

@u
@x
ð1; tÞ � @u

@x
ð�1; tÞ

	 

dt: ð43Þ

We deduce the value Tf which corresponds to Uðt ¼ Tf Þ ¼ 0.

6. Finite element method

The finite element (FE) method is based on the weak formula-
tion of the problem (1). Choosing v as the test function, we write

Z 1

�1

@u
@t
þ c

@u
@x

� �
v þ m

@u
@x

@v
@x

	 

dx ¼ 0: ð44Þ

The global FE approximation is sought in terms of linear Lagrange
polynomials making up hat functions such that the numerical dis-
cretization is



Fig. 1. Analytical and numerical solutions for Re ¼ 20p.
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uhðxÞ ¼
XEþ1

i¼1

uiðtÞuiðxÞ; �1 6 x 6 1; ð45Þ

where h refers to the FE grid size. The subscript i denotes the index
of the FE grid nodes and E is the number of elements covering the
computational domain �1 6 x 6 1. The variables uiðtÞ are the time
dependent nodal values. The hat functions are linear interpolants
such that

uiðxÞ ¼

x�xi�1
h x 2 ½xi�1; xi�

xiþ1�x
h x 2 ½xi; xiþ1�

0 x R ½xi�1; xiþ1�

8><
>: ; 2 6 i 6 E: ð46Þ

The number of grid points is therefore N ¼ Eþ 1. In the framework
of the Galerkin method, the test functions are chosen the same as
the approximation polynomials. The discrete problem becomesZ 1

�1

@uh

@t
þ c

@uh

@x

� �
vh þ m

@uh

@x
@vh

@x

	 

dx ¼ 0; ð47Þ

with vh ¼ ui; i ¼ 1; . . . ; E. Introducing (46) in (47), we generate a
linear system of algebraic equations of order N � 2 as the end points
are given boundary values

XN�1

k¼2

Mi;k
duk

dt
þ ðcDi;k þ mKi;kÞuk

� �
¼ 0; 2 6 i 6 N � 1: ð48Þ

It is a simple exercise to compute the various matrices involved in
the discrete equations. The stiffness matrix ½K� is symmetric and
positive definite

Ki;k ¼
Z 1

�1

dui

dx
duk

dx
dx; 2 6 i; k 6 N � 1: ð49Þ

The mass matrix ½M� is given as

Mi;k ¼
Z 1

�1
uiukdx; 2 6 i 6 N � 1; ð50Þ

while the weak derivative ½D� corresponds to

Di;k ¼
Z 1

�1

dui

dx
ukdx; 2 6 i 6 N � 1: ð51Þ

The discrete equation for node i is

h
6

dui�1

dt
þ 2h

3
dui

dt
þ h

6
duiþ1

dt
þ c

uiþ1 � ui�1

2
� m

h
ui�1 � 2ui þ uiþ1ð Þ ¼ 0:

ð52Þ

The resulting set of ordinary differential equations reads

½M� duðtÞ
dt
þ ð½K� þ ½D�ÞuðtÞ ¼ 0; ð53Þ

where u is the vector collecting all problem unknowns. Using an
implicit Crank–Nicolson time scheme for the viscous part and a sec-
ond-order Adams–Bashforth explicit integration for the advection
term, the full discrete equations read

½M� þ Dt
2
½K�

� �
unþ1 ¼ ½M� � Dt

2
½K�

� �
un þ Dt

2
½D� 3un � un�1
� �

; ð54Þ

with the time step Dt submitted to a CFL condition for stability con-
siderations of the explicit part.

7. Results

We will set up c ¼ 1 for the sake of simplicity. This choice has
no consequences on the generality of the discussion. The Reynolds
number is defined as

Re ¼ cL
m
¼ 2

m
; ð55Þ

with the choice L ¼ 2.
The analytical solution (17) is computed by Maple� [9] with 800
terms in the series. For the moderate values of m ¼ 1=10p; 1=100,
the computations are carried out with 50 digits to reach the
desired accuracy, namely 16 significant decimal places. For the
case m ¼ 1=100p; 150 digits are necessary, while 500 digits are
needed for m ¼ 1=1000. If 400 digits were used in this last compu-
tation, the analytical solution blows up due to the instability and
the stiffness induced by the presence of the exponential e

c
2mx.

The FE solution is obtained with E ¼ 1000 elements and
Dt ¼ 1=10 for m ¼ 1=10p and Dt ¼ 1=100 for m ¼ 1=100p.

Figs. 1 and 2 show the analytical solution in colored solid lines
for m ¼ 1=10p and m ¼ 1=100, respectively. The black dots show the
FE solution for equally spaced abscissae with Dx ¼ 0:05. The agree-
ment between both solutions is good and the maximum error in L1

norm is of the order of 10�2. Fig. 3 shows the solutions for
m ¼ 1=100p. Note that close to x ¼ 1 a very sharp boundary layer
develops. The LAD solution is very different from the one com-
puted for the non-linear Burgers equation where c ¼ u. In this case,
the maxima of the sine function move in the direction of the origin
and build up a sawtooth profile which is still C1 by the presence of
the viscosity. The sawtooth becomes discontinuous only for the
inviscid case.

The FE solution for m ¼ 1=1000 requires E ¼ 2000 elements and
Dt ¼ 1=100. Fig. 4 illustrates the comparison of the analytical and
FE solutions. We conclude that the boundary layer at x ¼ 1 behaves
like a sharp exponential layer.

Let us now inspect the solution (36) for weak viscosity.
Fig. 5 compares the u profile for the three values of

m ¼ 0; 1=100p and m! 0. The inviscid solution has no damping
as it corresponds to a simple wave. The solution for the vanishing
viscosity has a sharp corner at x ¼ 0 which is completely smeared
by the viscosity for m ¼ 1=100p.

The rate of change of the kinetic energy is governed by viscosity
and the gradient @u=@x, cf. Eq. (40). Of major importance is the
slope of the profile at x ¼ 1. From Eq. (17), the exponential layer
thickness goes like Oðe c

2mÞ. Figs. 6 and 7 display the variation of
the slope versus time. Starting from the initial value p, for
m ¼ 1=100p, the maximum value reaches 309:402 at t ¼ 0:49045,
while the minimum value �299:8333 is obtained at t ¼ 1:4904.
The FE values with E ¼ 1000 elements, computed by a backward
second order finite difference formula, yield 291:72 at t ¼ 0:49
and �282:698 at t ¼ 1:49. With E ¼ 2000 elements, one has
303:73 and �294:31 at the same times.

For m ¼ 1=1000, the maximum value reaches 994:914 at
t ¼ 0:4905, while the minimum value �985:143 is obtained at
t ¼ 1:4905.



Fig. 2. Analytical and numerical solutions for Re ¼ 200.

Fig. 3. Analytical and numerical solutions for Re ¼ 200p.

Fig. 4. Analytical and numerical solutions for Re ¼ 2000.

Fig. 5. Analytical solutions for t ¼ 1; m ¼ 0 (green), m ¼ 1=100p (black), m! 0 (red).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. @u
@x ðx ¼ 1; tÞ; m ¼ 1=100p.

Fig. 7. @u
@x ðx ¼ 1; tÞ; m ¼ 1=1000.
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Fig. 8 exhibits the time variation of the average velocity. The
final time Tf for the values m ¼ 1=10p; 1=100; 1=100p, respec-
tively are given by Tf ¼ 2:787; 2:423; 2:204.
Tables 1–3 give numerical values with five accurate decimal
places of the u solution (17) at times t ¼ 0:8; 1:0; 1:6 and Rey-
nolds numbers 40p; 400; 200p; 4000. One observes that the solu-



Fig. 8. dU
dt versus time, m ¼ 1=100p.

Table 1
Analytical results for uð0:9 6 x < 1; t ¼ 0:8Þ; Re ¼ 40p; 400; 200p; 4000.

x Re ¼ 40p Re ¼ 400 Re ¼ 200p Re ¼ 4000

0.9 �0.27119 �0.29706 �0.30516 �0.30780
0.94 �0.36068 �0.40929 �0.42046 �0.42410
0.96 �0.37596 �0.46288 �0.47574 �0.47986
0.98 �0.31256 �0.50386 �0.52913 �0.53372
0.99 �0.20734 �0.46059 �0.55393 �0.55987
0.999 �0.00445 �0.09798 �0.26693 �0.50336

Table 2
Analytical results for uð0:4 6 x < 1; t ¼ 1:0Þ; Re ¼ 40p; 400; 200p; 4000.

x Re ¼ 40p Re ¼ 400 Re ¼ 200p Re ¼ 4000

0.4 0.81507 0.90527 0.93623 0.94637
0.5 0.85503 0.95185 0.98441 0.99508
0.6 0.81286 0.90526 0.93623 0.94637
0.7 0.69142 0.77006 0.79641 0.80503
0.8 0.5023 0.55948 0.57862 0.58489
0.9 0.26459 0.29414 0.30420 0.30750
0.94 0.16383 0.17836 0.18446 0.18646
0.98 0.06894 0.06086 0.06181 0.06248
0.99 0.04117 0.03394 0.03098 0.03126
0.999 0.00521 0.00544 0.00474 0.00355

Table 3
Analytical results for uð0:9 6 x < 1; t ¼ 1:6Þ;Re ¼ 40p;400;200p;4000.

x Re ¼ 40p Re ¼ 400 Re ¼ 200p Re ¼ 4000

0.90 0.62300 0.74874 0.78894 0.80265
0.94 0.68241 0.81004 0.85456 0.86941
0.96 0.65665 0.83652 0.88237 0.89771
0.98 0.51887 0.81925 0.90670 0.92246
0.99 0.33970 0.68929 0.91578 0.93348
0.999 0.04440 0.22293 0.43121 0.81478

Table 4
Analytical results for @u

@x ð1; tÞ;Re ¼ 40p;400;200p;2000;4000.

@u
@x ð1; tÞ Re ¼ 40p Re ¼ 400 Re ¼ 200p Re ¼ 2000 Re ¼ 4000

t ¼ 0:8 28.087 108.120 175.118 578.119 1165.876
t ¼ 1:0 �5.370 �5.981 �6.089 �6.221 � 6.252
t ¼ 1:6 �45.814 �173.998 �282.290 �934.245 �1885.227

Table 5
FE results for @u

@x ð1; tÞ;Re ¼ 200p.

E t ¼ 0:8 1.0 1.6

2000 171.9858 �5.8412 �277.1557
4000 174.2134 �6.0202 �280.8124

Table 6
FE results for @u

@x ð1; tÞ;Re ¼ 2000.

E t ¼ 0:8 1.0 1.6

4000 555.1425 �5.7787 �896.9483
8000 571.0469 �6.0448 �922.7606
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tion for t ¼ 0:8 and 1:6 and Re ¼ 4000 builds up an extremely
sharp variation near the right boundary. In Table 4 we report the
slope of the u profile at x ¼ 1 for the times t ¼ 0:8; 1:0 and 1:6.

Let us inspect the accuracy achieved by the FE solution for the
slope @u

@x ð1; tÞ. We will examine two intermediate values of Re given
in Table 4, namely Re ¼ 200p and Re ¼ 2000. Table 5 presents the
numerical values for Re ¼ 200p with two discretizations E ¼ 2000
and E ¼ 4000. Richardson extrapolation of @u

@x ð1; t ¼ 1:6Þ yields the
value �282:0313, offering three significant digits. Table 6 shows
the results for Re ¼ 2000 with E ¼ 4000 and E ¼ 8000. Extrapola-
tion of @u

@x ð1; t ¼ 1:6Þ yields the value �931:3647 with two signifi-
cant digits.

Mesh adaptivity is required at lower values of the viscosity to
resolve the exponential layer. In the one-dimensional case, this
may be achieved by domain decomposition and local refinement
close to the wall. For higher dimensions, the reader is referred
for example to the paper by Sun et al. [12].

Another way to cope with this difficulty consists in using high-
order methods like spectral elements or hp methods.
8. Conclusions

The analytical solution of the linear advection–diffusion equa-
tion is obtained for Dirichlet boundary conditions and a smooth
sine initial function. The closed form solution involves the Rey-
nolds number as the governing parameter in exponential terms.
The presence of these terms renders the problem stiff and ill-con-
ditioned for small viscosity values. The comparison of analytical
and FE solutions are presented for various values of the viscosity
when the advection velocity is maintained constant. For moderate
viscosity values m < 1=100p both solutions are easily computed.

When viscosity goes to zero, another analytical approach is
designed based on a perturbed wave equation. The solution is very
close to the Fourier solution which would be obtained for periodic
conditions.

For weak values of the viscosity, a downstream boundary layer
builds up close to the boundary. This layer has an exponential
characterization. Therefore the FE mesh needs local refinement to
resolve for example the numerical evaluation of the slope next to
the wall.
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